Skip to main content

Memory-Constrained Context-Aware Reasoning

  • Conference paper
  • First Online:
Context-Aware Systems and Applications (ICCASA 2021)

Abstract

The context-aware computing paradigm introduces environments, known as smart spaces, which can unobtrusively and proactively assist their users. These systems are currently mostly implemented on mobile platforms considering various techniques, including ontology-driven multi-agent rule-based reasoning. Rule-based reasoning is a relatively simple model that can be adapted to different real-world problems. It can be developed considering a set of assertions, which collectively constitute the working memory, and a set of rules that specify how to act on the assertion set. However, the size of the working memory is crucial when developing context-aware systems in resource constrained devices such as smartphones and wearables. In this paper, we discuss rule-based context-aware systems and techniques for determining the required working memory size for a fixed set of rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ligeza, A.: Logical Foundations for Rule-Based Systems, vol. 11, no. 2. Springer, Heidelberg (2006)

    Google Scholar 

  2. Giarratano, J.C., Riley, G.: Expert systems, principles and programming, Thomson course of technology. Boston, Australia (2005)

    Google Scholar 

  3. Luger, G.F.: Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 6th edn. (2005)

    Google Scholar 

  4. Tai, W., Keeney, J., O’Sullivan, D.: Resource-constrained reasoning using a reasoner composition approach. Semant. Web 6, 35–59 (2015)

    Article  Google Scholar 

  5. Rakib, A., Haque, H.M.U.: A logic for context-aware non-monotonic reasoning agents. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds.) MICAI 2014. LNCS (LNAI), vol. 8856, pp. 453–471. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13647-9_41

    Chapter  Google Scholar 

  6. Rakib, A., Uddin, I.: An efficient rule-based distributed reasoning framework for resource-bounded systems. Mob. Netw. Appl. 24(1), 82–99 (2019)

    Article  Google Scholar 

  7. Sarker, I.H.: Mobile data science: towards understanding data-driven intelligent mobile applications. arXiv preprint arXiv:1811.02491 (2018)

  8. Sarker, I.H.: BehavMiner: mining user behaviors from mobile phone data for personalized services. In: 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 452–453. IEEE Computer Society (2018)

    Google Scholar 

  9. Chronis, I., Madan, A., Pentland, A.: SocialCircuits: the art of using mobile phones for modeling personal interactions. In: Proceedings of the ICMI-MLMI 2009 Workshop on Multimodal Sensor-Based Systems and Mobile Phones for Social Computing, pp. 1–4 (2009)

    Google Scholar 

  10. Jung, J.J.: Contextualized mobile recommendation service based on interactive social network discovered from mobile users. Expert Syst. Appl. 36(9), 11950–11956 (2009)

    Article  Google Scholar 

  11. Olguín, D.O., Waber, B.N., Kim, T., Mohan, A., Ara, K., Pentland, A.: Sensible organizations: technology and methodology for automatically measuring organizational behavior. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(1), 43–55 (2008)

    Article  Google Scholar 

  12. Aly, W.M., Eskaf, K.A., Selim, A.S.: Fuzzy mobile expert system for academic advising. In: 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–5. IEEE (2017)

    Google Scholar 

  13. Ghasempour, A.: Optimized scalable decentralized hybrid advanced metering infrastructure for smart grid. In: 2015 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 223–228. IEEE (2015)

    Google Scholar 

  14. Ghasempour, A.: Optimum packet service and arrival rates in advanced metering infrastructure architecture of smart grid. In: 2016 IEEE Green Technologies Conference (GreenTech), pp. 1–5. IEEE (2016)

    Google Scholar 

  15. Ghasempour, A.: Optimized advanced metering infrastructure architecture of smart grid based on total cost, energy, and delay. In: 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1–6. IEEE (2016)

    Google Scholar 

  16. Ghasempour, A.: Optimizing the advanced metering infrastructure architecture in smart grid. Utah State University (2016)

    Google Scholar 

  17. Sharma, V., Song, F., You, I., Atiquzzaman, M.: Energy efficient device discovery for reliable communication in 5G-based IoT and BSNs using unmanned aerial vehicles. J. Netw. Comput. Appl. 97, 79–95 (2017)

    Article  Google Scholar 

  18. Sharma, V., You, I., Andersson, K., Palmieri, F., Rehmani, M.H., Lim, J.: Security, privacy and trust for smart mobile-internet of things (M-IoT): a survey. IEEE Access 8, 167123–167163 (2020)

    Article  Google Scholar 

  19. Abulkhair, M.F., Ibrahim, L.F.: Using rule base system in mobile platform to build alert system for evacuation and guidance. Int. J. Adv. Comput. Sci. Appl. 7(4), 68–79 (2016)

    Google Scholar 

  20. Mukherjee, C.: Build Android-Based Smart Applications: Using Rules Engines, NLP and Automation Frameworks. Apress (2017)

    Google Scholar 

  21. Uddin, I.: A rule-based framework for developing context-aware systems for smart spaces. Ph.D. thesis, University of Nottingham (2019)

    Google Scholar 

  22. Alirezaie, M., et al.: An ontology-based context-aware system for smart homes: E-care@home. Sensors (Basel, Switzerland) 17 (2017)

    Google Scholar 

  23. Abdur, R.: Smart space system interoperability. In: Proceedings of the 3rd International Workshop on (Meta)Modelling for Healthcare Systems, Bergen, Norway, vol. 2336, pp. 16–23. CEUR Workshop Proceedings (2018)

    Google Scholar 

  24. Uddin, I., Rakib, A., Haque, H.M.U., Vinh, P.C.: Modeling and reasoning about preference-based context-aware agents over heterogeneous knowledge sources. Mob. Netw. Appl. 23, 13–26 (2018)

    Article  Google Scholar 

  25. Streitz, N.A., Charitos, D., Kaptein, M., Böhlen, M.: Grand challenges for ambient intelligence and implications for design contexts and smart societies. J. Ambient Intell. Smart Environ. 11, 87–107 (2019)

    Article  Google Scholar 

  26. Mahalle, P.N., Dhotre, P.S.: Context-Aware Pervasive Systems and Applications. ISRL, vol. 169. Springer, Singapore (2020). https://doi.org/10.1007/978-981-32-9952-8

    Book  Google Scholar 

  27. Cook, D., Das, S.: Smart Environments: Technology, Protocols and Applications (Wiley Series on Parallel and Distributed Computing). Wiley, Hoboken (2004)

    Book  Google Scholar 

  28. Noy, N., McGuinness, D., Hayes, P.J.: Semantic integration & interoperability using RDF and OWL. W3C Editor’s Draft 3, November 2005

    Google Scholar 

  29. Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5, 4–7 (2001)

    Article  Google Scholar 

  30. Uddin, I., Rakib, A.: A preference-based application framework for resource-bounded context-aware agents. In: Kim, K.J., Joukov, N. (eds.) ICMWT 2017. LNEE, vol. 425, pp. 187–196. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-5281-1_20

    Chapter  Google Scholar 

  31. Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context modeling and reasoning using OWL. In: IEEE Annual Conference on Pervasive Computing and Communications Workshops, pp. 18–22 (2004)

    Google Scholar 

  32. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: a Semantic Web rule language combining OWL and RuleML. Acknowledged W3C submission, standards proposal research report: Version 0.6, April 2004

    Google Scholar 

  33. Grosof, B., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logics. In: The Twelfth International World Wide Web Conference, Budapest, pp. 48–57. ACM (2003)

    Google Scholar 

  34. Rakib, A., Ul Haque, H.M., Faruqui, R.U.: A temporal description logic for resource-bounded rule-based context-aware agents. In: Vinh, P.C., Alagar, V., Vassev, E., Khare, A. (eds.) ICCASA 2013. LNICST, vol. 128, pp. 3–14. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05939-6_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uddin, I., Rakib, A., Ali, M., Vinh, P.C. (2021). Memory-Constrained Context-Aware Reasoning. In: Cong Vinh, P., Rakib, A. (eds) Context-Aware Systems and Applications. ICCASA 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 409. Springer, Cham. https://doi.org/10.1007/978-3-030-93179-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93179-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93178-0

  • Online ISBN: 978-3-030-93179-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics