Skip to main content

Use-Case Informed Task Analysis for Secure and Usable Design Solutions in Rail

  • Conference paper
  • First Online:
Critical Information Infrastructures Security (CRITIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 13139))

Abstract

Meeting secure and usable design goals needs the combined effort of safety, security and human factors experts. Human factors experts rely on a combination of cognitive and hierarchical task analysis techniques to support their work. We present an approach where use-case specifications are used to support task analysis, and human failure levels help identify design challenges leading to errors or mistakes. We illustrate this approach by prototyping the role of the European Railway Traffic Management System (ERTMS) - Signaller, which provides human factors experts a chance to work in collaboration with safety and security design experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://trello.com.

  2. 2.

    The complete CAIRIS model of this analysis is available at https://github.com/s5121191/CRITIS-21.

References

  1. Affairs, A.S.F.P.: Task Analysis, September 2013. /how-to-and-tools/methods/task-analysis.html

    Google Scholar 

  2. Al-Shargie, F., Tariq, U., Mir, H., Alawar, H., Babiloni, F., Al-Nashash, H.: Vigilance decrement and enhancement techniques: a review. Brain Sci. 9(8), 178 (2019). https://doi.org/10.3390/brainsci9080178

    Article  Google Scholar 

  3. Altaf, A., Faily, S., Dogan, H., Mylonas, A., Thron, E.: Identifying safety and human factors issues in rail using IRIS and CAIRIS. In: Katsikas, S., et al. (eds.) CyberICPS/SECPRE/SPOSE/ADIoT -2019. LNCS, vol. 11980, pp. 98–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42048-2_7

    Chapter  Google Scholar 

  4. Atzeni, A., Cameroni, C., Faily, S., Lyle, J., Flechais, I.: Here’s Johnny: a methodology for developing attacker personas. In: 2011 Sixth International Conference on Availability, Reliability and Security, Vienna, Austria, pp. 722–727. IEEE, August 2011. https://doi.org/10.1109/ARES.2011.115

  5. Brostoff, S., Sasse, A.: Safe and sound: a safety-critical approach to security, p. 10 (2001)

    Google Scholar 

  6. Cao, S., Liu, Y.: Modelling workload in cognitive and concurrent tasks with time stress using an integrated cognitive architecture. Int. J. Hum. Factors Model. Simul. 5, 113 (2015). https://doi.org/10.1504/IJHFMS.2015.075360

    Article  Google Scholar 

  7. Cockburn, A.: Basic use case template vol. 8, no. 2, October 1998

    Google Scholar 

  8. Cockburn, A., Bank, N.: Structuring use cases with goals, December 1997

    Google Scholar 

  9. Conway, D., Dick, I., Li, Z., Wang, Y., Chen, F.: The effect of stress on cognitive load measurement. In: Kotzé, P., Marsden, G., Lindgaard, G., Wesson, J., Winckler, M. (eds.) INTERACT 2013. LNCS, vol. 8120, pp. 659–666. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40498-6_58

    Chapter  Google Scholar 

  10. Cooper, A.: The Inmates Are Running the Asylum. Macmillan Publishing Co., London (1999)

    Book  Google Scholar 

  11. Crandall, B., Klein, G., Hoffman, R.R.: Working Minds: A Practitioner’s Guide to Cognitive Task Analysis. MIT Press, Cambridge (2006)

    Book  Google Scholar 

  12. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci. Comput. Program. 20(1), 3–50 (1993). https://doi.org/10.1016/0167-6423(93)90021-G

    Article  MATH  Google Scholar 

  13. Davis, W., Burton, A.: Ecological task analysis: translating movement behavior theory into practice. Adapt. Phys. Activ. Q. 8, 154–177 (1991). https://doi.org/10.1123/apaq.8.2.154

    Article  Google Scholar 

  14. Diaper, D., Stanton, N.: The Handbook of Task Analysis for Human-Computer Interaction. CRC Press, Mahwah (2004)

    Google Scholar 

  15. Embrey, D.: Task analysis techniques, p. 14 (2000)

    Google Scholar 

  16. Embrey, D.D., Zaed, S.: A set of computer based tools identifying and preventing human error in plant operations, p. 11 (2021)

    Google Scholar 

  17. Erbacher, R.F., Frincke, D.A., Wong, P.C., Moody, S., Fink, G.: A multi-phase network situational awareness cognitive task analysis. Inf. Vis. 9(3), 204–219 (2012). https://doi.org/10.1057/ivs.2010.5

    Article  Google Scholar 

  18. ERTMS: A day in the life of a train - operational concept, April 2019

    Google Scholar 

  19. European Network and Information Security Agency: Railway Cybersecurity: Security Measures in the Railway Transport Sector. Publications Office, LU (2020)

    Google Scholar 

  20. Faily, S.: Designing Usable and Secure Software with IRIS and CAIRIS. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75493-2

    Book  Google Scholar 

  21. Faily, S., Fléchais, I.: Barry is not the weakest link: eliciting secure system requirements with personas, p. 8, September 2010

    Google Scholar 

  22. Faily, S., Flechais, I.: User-centered information security policy development in a Post-Stuxnet world. In: 2011 Sixth International Conference on Availability, Reliability and Security, Vienna, Austria, pp. 716–721. IEEE, August 2011. https://doi.org/10.1109/ARES.2011.111

  23. Felice, F.D., Petrillo, A.: Methodological approach for performing human reliability and error analysis in railway transportation system. Int. J. Eng. Technol. 3(5), 341–353 (2011)

    Google Scholar 

  24. Golightly, D., Balfe, N., Sharples, S., Lowe, E.: Measuring situation awareness in rail signaling. In: Rail Human Factors Around the World: Impacts on and of People for Successful Rail Operations, pp. 361–369, April 2009. https://doi.org/10.1201/b12742-43

  25. Hammerl, M., Vanderhaegen, F.: Human factors in the railway system safety analysis process. In: 3rd International Rail Human Factors Conference, p. 9 (2009)

    Google Scholar 

  26. Jen, R.: How to increase risk awareness. In: PMI® Global Congress 2012. PA: Project Management Institute, Vancouver, British Columbia, Canada, North America (2012)

    Google Scholar 

  27. Jonsson, E., Olovsson, T.: On the integration of security and dependability in computer systems, p. 6 (1998)

    Google Scholar 

  28. Martin, K.: Understanding railway signaller tasks and operations, February 2020

    Google Scholar 

  29. Militello, L., Hutton, R.: Applied Cognitive Task Analysis (ACTA): a practitioner’s toolkit for understanding cognitive task demands. Ergonomics 41, 1618–41 (1998). https://doi.org/10.1080/001401398186108

    Article  Google Scholar 

  30. Nielsen, L.: Personas - User Focused Design. Human–Computer Interaction Series. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4084-9

  31. Norman, D.: Emotional design: why we love (or hate) everyday things. J. Am. Cult. 27(2), 234 (2004)

    MathSciNet  Google Scholar 

  32. Pruitt, J., Grudin, J.: Personas: practice and theory. In: Proceedings of the 2003 Conference on Designing for User Experiences, DUX’03, pp. 1–15. ACM, New York (2003). https://doi.org/10.1145/997078.997089

  33. Rail, N.: Network rail - signalling control centers, June 2018

    Google Scholar 

  34. Reason, J.: Human Error (1990). https://doi.org/10.1017/CBO9781139062367

  35. RSSB: Operational Concept for ERTMS, June 2014

    Google Scholar 

  36. Schneier, B.: Secrets and Lies: Digital Security in a Networked World. Wiley, Hoboken (2000)

    Google Scholar 

  37. Shostack, A.: Threat Modeling: Designing for Security. Wiley, Indianapolis (2014)

    Google Scholar 

  38. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Requir. Eng. 10(1), 34–44 (2005). https://doi.org/10.1007/s00766-004-0194-4

    Article  Google Scholar 

  39. Toulmin, S.E.: The Uses of Argument, p. 259 (2003)

    Google Scholar 

  40. Wiegmann, D.A., Shappell, S.A.: A Human Error Approach to Aviation Accident Analysis: The Human Factors Analysis and Classification System, 1 edn. Routledge, Aldershot, Burlington, July 2003

    Google Scholar 

  41. Zhou, J.L., Lei, Y.: Paths between latent and active errors: analysis of 407 railway accidents/incidents’ causes in China. Saf. Sci. 110, 47–58 (2018). https://doi.org/10.1016/j.ssci.2017.12.027

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was funded by the BU studentship Integrating Safety, Security, and Human Factors Engineering in Rail Infrastructure Design & Evaluation. We are also grateful to Ricardo for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amna Altaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Altaf, A., Faily, S., Dogan, H., Mylonas, A., Thron, E. (2021). Use-Case Informed Task Analysis for Secure and Usable Design Solutions in Rail. In: Percia David, D., Mermoud, A., Maillart, T. (eds) Critical Information Infrastructures Security. CRITIS 2021. Lecture Notes in Computer Science(), vol 13139. Springer, Cham. https://doi.org/10.1007/978-3-030-93200-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93200-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93199-5

  • Online ISBN: 978-3-030-93200-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics