Skip to main content

Utilization of Self-organizing Maps for Map Depiction of Multipath Clusters

  • Conference paper
  • First Online:
Intelligent Computing & Optimization (ICO 2021)

Abstract

Clustering of multipath components (MPC) simplifies the analysis of the wireless environment to produce the channel impulse response which leads to an effective channel model. Automatic clustering of the MPC has been utilized as a replacement to the traditional manual approach. The arbitrary nature of MPC that interacts with the surrounding environment still challenges wireless researchers to utilize algorithms that are fitted based on the measured data of the channel. For enhancing the clustering process, visualization plays a considerable part in inferring knowledge in the dataset and the clustering results. Hence, the combination of the automatic and manual approach in clustering enhances the process, leading to efficient and accurate extraction of the clusters using visualization. Self-Organizing Map (SOM) has been proven helpful in aiding the clustering and visualization in different fields process which can be combined to form a hybrid system in clustering problems. In this paper, the investigation of the effectiveness of SOM in visualizing the MPC extracted from the COST2100 channel model (C2CM) and visualize clustering tendencies of the dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Series, M.: Minimum Requirements Related to Technical Performance for IMT-2020 Radio Interface(s) Report 2410-0 (2017)

    Google Scholar 

  2. Alejandrino, J., Concepcion II, R., Lauguico, S., Palconit, M.G., Bandala, A., Dadios, E.: Congestion detection in wireless sensor networks based on artificial neural network and support vector machine. In: 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), pp. 1–6. IEEE (2020)

    Google Scholar 

  3. Oestges, C., Clerckx, B.: Modeling outdoor macrocellular clusters based on 1.9-GHz experimental data. IEEE Trans. Vehicular Technol. 56(5), 2821--2830 (2007)

    Google Scholar 

  4. Czink, N., Cera, P., Salo, J., Bonek, E., Nuutinen, J., Ylitalo, J.: A framework for automatic clustering of parametric MIMO channel data including path powers. In: Vehicular Technology Conference, pp. 1–5. IEEE (2006)

    Google Scholar 

  5. Keim, D.A.: Information visualization and visual data mining. Trans. Visual. Comput. Graph. 8(1), 1–8 (2002)

    Article  MathSciNet  Google Scholar 

  6. Concepcion, R., II., dela Cruz, C.J., Gamboa, A.K., Abdulkader, S.A., Teruel, S.I., Macaldo, J.: Advancement in computer vision, artificial intelligence and wireless technology: a crop phenotyping perspective. Int. J. Adv. Sci. Technol. 29(6), 7050–7065 (2020)

    Google Scholar 

  7. Chen, W., Guo, F., Wang, F.: A survey of traffic data visualization. Trans. Intell. Transp. Syst. 16(6), 2970–2984 (2015)

    Article  Google Scholar 

  8. Chaudhary, V., Ahlawat, A., Bhatia, R.S.: An efficient self-organizing map learning algorithm with winning frequency of neurons for clustering application. In: 3rd International Advance Computing Conference (IACC), pp. 672–067. IEEE (2013)

    Google Scholar 

  9. Mishra, M., Behera, H.: Kohonen self organizing map with modified K-means clustering for high dimensional data set. Int. J. Appl. Inf. Syst. 2(3), 34–39 (2012)

    Google Scholar 

  10. Alejandrino, J., et al.: Protocol-independent data acquisition for precision farming. J. Adv. Comput. Intell. Intell. Inf. 25(4), 397–403 (2021)

    Article  Google Scholar 

  11. Wang, H., Yang, H., Xu, Z., Zheng, Y.: A clustering algorithm use SOM and K-means in intrusion detection. In: International Conference on E-Business and E-Government, pp. 1281–1284 (2010)

    Google Scholar 

  12. Xu, L., Chow, T., Ma, E.: Topology-based clustering using polar self-organizing map. Trans. Neural Netw. Learn. Syst. 26(4), 798–808 (2015)

    Article  MathSciNet  Google Scholar 

  13. Wickramasinghe, C.S., Amarasinghe, K., Manic, M.: Deep self-organizing maps for unsupervised image classification. IEEE Trans. Indust. Inf. 15(11), 5837–5845 (2019)

    Article  Google Scholar 

  14. Materum, L., Takada, J., Ida, I., Oishi, Y.: Mobile station spatio-temporal multipath clustering of an estimated wideband MIMO double-directional channel of a small urban 4.5 GHz microcell. EURASIP J. Wirel. Commun. Netw. 2009, 1–16 (2009)

    Google Scholar 

  15. Alejandrino, J., Concepcion, R., Almero, V.J., Palconit, M.G., Bandala, A., Dadios, E.: A hybrid data acquisition model using artificial intelligence and IoT messaging protocol for precision farming. In: 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), pp. 1–6. IEEE (2021)

    Google Scholar 

  16. Li, J., Ai, B., He, R., Yang, M., Zhong, Z., Hao, Y.: A cluster-based channel model for massive MIMO communications in indoor hotspot scenarios. Trans. Wirel. Commun. 18(8), 3856–3870 (2019)

    Article  Google Scholar 

  17. Moayyed, M.T., Antonescu, B., Basagni, S.: Clustering algorithms and validation indices for mmWave radio multipath propagation. In: Wireless Telecommunications Symposium (WTS), pp. 1–7. IEEE (2019)

    Google Scholar 

  18. Teologo, A.: Cluster-wise Jaccard accuracy of KPower means on multipath datasets. Int. J. Emerg. Trends Eng. Res. 7, 203–208 (2019)

    Article  Google Scholar 

  19. Ladrido, J.M., Alejandrino, J., Trinidad, E., Materum, L.: Comparative survey of signal processing and artificial intelligence based channel equalization techniques and technologies. Int. J. Emerg. Trends Eng. Res. 7(9), 31–322 (2019)

    Google Scholar 

  20. Alejandrino, J., Concepcion, R., Lauguico, S., Flores, R., Bandala, A., Dadios, E.: Application-based cluster and connectivity-specific routing protocol for smart monitoring system. In: 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), pp. 1–6. IEEE (2020)

    Google Scholar 

  21. Palamara, F., Piglione, F., Piccinin, N.: Self- organizing map and clustering algorithms for the analysis of occupational accident databases. Saf. Sci. 49(8), 1215–1230 (2011)

    Article  Google Scholar 

  22. Kohonen, T.: Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013)

    Article  Google Scholar 

  23. Krak, I., Barmak, O., Manziuk, E., Kulias, A.: Data classification based on the features reduction and piecewise linear separation. In: Vasant, P., Zelinka, I., Weber, G.-W. (eds.) ICO 2019. AISC, vol. 1072, pp. 282–289. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-33585-4_28

    Chapter  Google Scholar 

  24. Shieh, S.-L., Liao, I.-E.: A new approach for data clustering and visualization using self-organizing maps. Expert Syst. Appl. 39(15), 11924–11933 (2012)

    Article  Google Scholar 

  25. Concepcion, R.S., II., et al.: Adaptive fertigation system using hybrid vision-based lettuce phenotyping and fuzzy logic valve controller towards sustainable aquaponics. J. Adv. Comput. Intell. Intell. Inf. 25(5), 610–617 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonnel Alejandrino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alejandrino, J. et al. (2022). Utilization of Self-organizing Maps for Map Depiction of Multipath Clusters. In: Vasant, P., Zelinka, I., Weber, GW. (eds) Intelligent Computing & Optimization. ICO 2021. Lecture Notes in Networks and Systems, vol 371. Springer, Cham. https://doi.org/10.1007/978-3-030-93247-3_41

Download citation

Publish with us

Policies and ethics