Abstract
In this chapter, the real-time non-rigid tracking system to continuously estimate the deformations of the manipulated objects is described, using visual and range data provided by an RGB-D sensor. Based on the models described in the previous chapter, the method enables to deal with various deformations (elastic and plastic), fractures, and contacts, while ensuring physical consistency, handling rigid motions, occlusions, and addressing these tasks in real-time. It relies on a prior visual segmentation of the object in the RGB image. The mesh is registered first in a rigid manner with a classical ICP algorithm between the visible surface of the mesh and the segmented point cloud. A non-rigid fitting phase is then performed by determining geometrical point-to-point correspondences with the point cloud, used to compute external forces exerted on the mesh. Deformations are computed by solving mechanical equations balancing these external forces with internal forces provided by the FEM models. A technique to estimate the elastic parameters of the object is proposed by minimizing a fitting error between the simulated deformations, actuated by the input operator force provided by a force sensor, and the deformations captured by the RGB-D camera. Conversely, estimating a contact force exerted on the object can be carried out using point cloud data by minimizing the deviation between the registered and the simulated deformations. The system has been evaluated on synthetic and real data, with various objects, deformation, and interaction scenarios, and by integrating it into manipulation experiments on the RoDyMan humanoid robotic platform. This chapter is based on the works presented in [1,2,3].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
A. Petit, S. Cotin, V. Lippiello, B. Siciliano. Capturing deformations of interacting non-rigid objects using RGB-D data, in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 491–497, Madrid, E (2018)
A. Petit, V. Lippiello, G.A. Fontanelli, B. Siciliano, Tracking elastic deformable objects with an RGB-D sensor for a pizza chef robot. Robot. Auton. Syst. 88, 187–201 (2017)
A. Petit, V. Lippiello, B. Siciliano, Tracking fractures of deformable objects in real-time with an RGB-D sensor, in 2015 International Conference on 3D Vision, pp. 632–639, Lyon, F (2015)
C. Elbrechter, R. Haschke, H. Ritter, Bi-manual robotic paper manipulation based on real-time marker tracking and physical modelling, in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1427–1432 (2011)
N. Haouchine, J. Dequidt, M.-O. Berger, S. Cotin, Monocular 3D reconstruction and augmentation of elastic surfaces with self-occlusion handling. IEEE Trans. Vis. Comput. Gr. 21(12), 1363–1376 (2015)
N. Haouchine, J. Dequidt, I. Peterlik, E. Kerrien, M.-O. Berger, S. Cotin, Image-guided simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery, in 2013 IEEE International Symposium on Mixed and Augmented Reality, pp. 199–208 (2013)
J. Schulman, A. Lee, J. Ho, P. Abbeel, Tracking deformable objects with point clouds, in 2013 IEEE International Conference on Robotics and Automation, pp. 1130–1137 (2013)
A. Bartoli, V. Gay-Bellile, U. Castellani, J. Peyras, S. Olsen, P. Sayd, Coarse-to-fine low-rank structure-from-motion in 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)
A. Weiss, D. Hirshberg, M.J. Black, Home 3D body scans from noisy image and range data, in 2011 IEEE International Conference on Computer Vision, pp. 1951–1958 (2011)
A. Bartoli, A. Zisserman, Direct estimation of non-rigid registrations, in British Machine Vision Conference, pp. 899–908 (2004)
M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)
J. Pilet, V. Lepetit, P. Fua, Fast non-rigid surface detection, registration and realistic augmentation. Int. J. Comput. Vis. 76(2), 109–122 (2007)
D. Terzopoulos, A. Witkin, M. Kass, Constraints on deformable models: recovering 3D shape and nonrigid motion. Artif. Intell. 36(1), 91–123 (1988)
M. Salzmann, J. Pilet, S. Ilic, P. Fua, Surface deformation models for nonrigid 3D shape recovery. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1481–1487 (2007)
A. Jordt, R. Koch, Direct model-based tracking of 3D object deformations in depth and color video. Int. J. Comput. Vis. 102, 1–17 (2013)
M. Zollhöfer, M. Nießner, S. Izadi, C. Rehmann, C. Zach, M. Fisher, C. Wu, A. Fitzgibbon, C. Loop, C. Theobalt, M. Stamminger, Real-time non-rigid reconstruction using an RGB-D camera. ACM Trans. Gr. 33(4), 1–12 (2014)
B. Allain, J.-S. Franco, E. Boyer, An efficient volumetric framework for shape tracking, in 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 268–276 (2015)
R.A. Newcombe, D. Fox, S.M. Seitz, Dynamic fusion: reconstruction and tracking of non-rigid scenes in real-time, in 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 343–352 (2015)
V. Lippiello, F. Ruggiero, B. Siciliano, Floating visual grasp of unknown objects using an elastic reconstruction surface, in Robotics Research: The Fourteenth International Symposium, in Springer Tracts in Advanced Robotics 70 ed. by C. Pradalier, R. Siegwart, G. Hirzinger (Springer, 2011), pp. 329–344
L.D. Cohen, I. Cohen, Deformable models for 3-D medical images using finite elements and balloons, in 1992 IEEE Conference on Computer Vision and Pattern Recognition, pp. 592–598 (1992)
T. McInerney, D. Terzopoulos, A finite element model for 3D shape reconstruction and nonrigid motion tracking, in 1993 IEEE International Conference on Computer Vision, pp. 518–523 (1993)
A. Malti, R. Hartley, A. Bartoli, J.-H. Kim. Monocular template-based 3D reconstruction of extensible surfaces with local linear elasticity, in 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1522–1529 (2013)
K. Varanasi, A. Zaharescu, E. Boyer, R. Horaud, Temporal surface tracking using mesh evolution, in European Conference on Computer Vision, pp. 30–43 (2008)
A. Zaharescu, E. Boyer, R. Horaud, Topology-adaptive mesh deformation for surface evolution, morphing, and multiview reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 823–837 (2011)
C.J. Paulus, N. Haouchine, S.-H. Kong, R.V. Soares, D. Cazier, S. Cotin, Handling topological changes during elastic registration. Int. J. Comput. Assist. Radiol. Surg. 12(3), 461–470 (2017)
A. Tsoli, A.A. Argyros, Tracking deformable surfaces that undergo topological changes using an RGB-D camera, in 2016 Fourth International Conference on 3D Vision, pp. 333–341 (2016)
I. Badami, J. Stückler, S. Behnke, Depth-enhanced Hough Forests for object-class detection and continuous pose estimation, in Workshop on Semantic Perception, Mapping and Exploration (2013)
A. Tejani, D. Tang, R. Kouskouridas, T.-K. Kim, Latent-Class Hough Forests for 3D object detection and pose estimation, in European Conference on Computer Vision, pp. 462–477 (2014)
H. Hamer, K. Schindler, E. Koller-Meier, L. Van Gool, Tracking a hand manipulating an object, in 2009 IEEE International Conference On Computer Vision, pp. 1475–1482 (2009)
K. Kim, V. Lepetit, W. Woo, Keyframe-based modeling and tracking of multiple 3d objects, in 2010 9th IEEE International Symposium on Mixed and Augmented Reality, pp. 193–198 (2010)
N. Kyriazis, A. Argyros, Scalable 3D tracking of multiple interacting objects, in 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3430–3437 (2014)
I. Oikonomidis, N. Kyriazis, A.A. Argyros, Full DoF tracking of a hand interacting with an object by modeling occlusions and physical constraints, in 2011 IEEE International Conference on Computer Vision, pp. 2088–2095 (2011)
I. Oikonomidis, N. Kyriazis, A.A. Argyros, Tracking the articulated motion of two strongly interacting hands, in 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1862–1869 (2012)
T.-H. Pham, A. Kheddar, A. Qammaz, A.A. Argyros, Towards force sensing from vision: Observing hand-object interactions to infer manipulation forces, in 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2810–2819 (2015)
M. Salzmann, R. Urtasun, Physically-based motion models for 3D tracking: A convex formulation, in 2011 IEEE International Conference on Computer Vision, pp. 2064–2071 (2011)
S. Sridhar, F. Mueller, M. Zollhöfer, D. Casas, A. Oulasvirta, C. Theobalt, Real-time joint tracking of a hand manipulating an object from RGB-D input, in European Conference on Computer Vision, pp. 294–310 (2016)
K. Guo, F. Xu, T. Yu, X. Liu, Q. Dai, Y. Liu, Real-time geometry, albedo, and motion reconstruction using a single RGB-D camera. ACM Trans. Gr. 36(4), 32:1–32:13 (2017)
C. Rother, V. Kolmogorov, A. Blake, Grabcut: interactive foreground extraction using iterated graph cuts. ACM Trans. Gr. 23, 309–314 (2004)
Y. Boykov, O. Veksler, R. Zabih, Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)
Y. Chen, G. Medioni, Object modelling by registration of multiple range images. Image Vis. Comput. 10(3), 145–155 (1992)
F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau, H. Talbot, H. Courtecuisse, G. Bousquet, I. Peterlik, S. Cotin, Sofa: A multi-model framework for interactive physical simulation, in Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, pp. 283–321 (2012)
A.V. Gelder, Approximate simulation of elastic membranes by triangulated spring meshes. J. Gr. Tools 3(2), 21–41 (1998)
B.A. Lloyd, G. Székely, M. Harders, Identification of spring parameters for deformable object simulation. IEEE Trans. Vis. Comput. Gr. 13(5), 1081–1094 (2007)
A. Petit, V. Lippiello, B. Siciliano, Real-time tracking of 3D elastic objects with an RGB-D sensor, in 2015 IEEE International Conference on Intelligent Robots and Systems, pp. 3914–3921 (2015)
R.A. Newcombe, A.J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton, D. Molyneaux, S. Hodges, D. Kim, A. Fitzgibbon. Kinect Fusion: real-time dense surface mapping and tracking, in 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136 (2011)
O. Kähler, V.A. Prisacariu, D.W. Murray, Real-time large-scale dense 3d reconstruction with loop closure, in European Conference on Computer Vision, pp. 500–516 (2016)
J. Allard, F. Faure, H. Courtecuisse, F. Falipou, C. Duriez, P.G. Kry, Volume contact constraints at arbitrary resolution, in ACM SIGGRAPH 2010 Papers, pp. 1–10 (2010)
B. Siciliano, O. Khatib, Springer Handbook of Robotics, 2nd edn. (Springer Science & Business Media, 2016)
R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing-from humans to humanoids. IEEE Trans. Rob. 26(1), 1–20 (2010)
N. Wettels, J.A. Fishel, Z. Su, C.H. Lin, G.E. Loeb, Multi-modal synergistic tactile sensing, in Tactile Sensing in Humanoids-Tactile Sensors and Beyond Workshop, 9th IEEE-RAS International Conference on Humanoid Robots (2009)
H. Yousef, M. Boukallel, K. Althoefer, Tactile sensing for dexterous in-hand manipulation in robotics-A review. Sens. Actuat. A 167(2), 171–187 (2011)
T.R. Grieve, J.M. Hollerbach, S.A. Mascaro, Force prediction by fingernail imaging using active appearance models, in 2013 World Haptics Conference, pp. 181–186 (2013)
D. Hristu, N. Ferrier, R.W. Brockett, The performance of a deformable-membrane tactile sensor: Basic results on geometrically-defined tasks, in 2000 IEEE International Conference on Robotics and Automation, pp. 508–513 (2000)
S.A. Mascaro, H.H. Asada, Photoplethysmograph fingernail sensors for measuring finger forces without haptic obstruction. IEEE Trans. Robot. Autom. 17(5), 698–708 (2001)
Y. Sun, J.M. Hollerbach, S.A. Mascaro, Predicting fingertip forces by imaging coloration changes in the fingernail and surrounding skin. IEEE Trans. Biomed. Eng. 55(10), 2363–2371 (2008)
Y. Sun, J.M. Hollerbach, S.A. Mascaro, Estimation of fingertip force direction with computer vision. IEEE Trans. Rob. 25(6), 1356–1369 (2009)
S. Urban, J. Bayer, C. Osendorfer, G. Westling, B.B. Edin, P. Van Der Smagt, Computing grip force and torque from finger nail images using gaussian processes, in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4034–4039 (2013)
W. Yuan, R: Li, M.A. Srinivasan, and E.H. Adelson. Measurement of shear and slip with a GelSight tactile sensor, in 2015 IEEE International Conference on Robotics and Automation, pp. 304–311 (2015)
K. Sato, K. Kamiyama, N. Kawakami, S. Tachi, Finger-shaped gelforce: Sensor for measuring surface traction fields for robotic hand. IEEE Trans. Haptics 3(1), 37–47 (2010)
L. Ballan, A. Taneja, J. Gall, L. Van Gool, and M. Pollefeys. Motion capture of hands in action using discriminative salient points, in European Conference on Computer Vision, pp. 640–653 (2012)
N. Kyriazis, A. Argyros, Physically plausible 3D scene tracking: the single actor hypothesis. In 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 9–16 (2013)
Y. Wang, J. Min, J. Zhang, Y. Liu, F. Xu, Q. Dai, J. Chai, Video-based hand manipulation capture through composite motion control. ACM Trans. Gr. 32(4), 43 (2013)
W. Zhao, J. Zhang, J. Min, J. Chai, Robust realtime physics-based motion control for human grasping. ACM Trans. Gr. 32(6), 1–12 (2013)
M.A. Brubaker, L. Sigal, D.J. Fleet, Estimating contact dynamics, in 2009 IEEE International Conference on Computer Vision, pp. 2389–2396 (2009)
B. Frank, R. Schmedding, C. Stachniss, M. Teschner, W. Burgard, Learning the elasticity parameters of deformable objects with a manipulation robot, in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1877–1883 (2010)
B. Wang, L. Wu, K. Yin, U. Ascher, L. Liu, H. Huang, Deformation capture and modeling of soft objects. ACM Trans. Gr. 34(4), 94:1–94:12 (2015)
F. Largilliere, V. Verona, E. Coevoet, M. Sanz-Lopez, J. Dequidt, C. Duriez, Real-time control of soft-robots using asynchronous finite element modeling, in 2015 IEEE International Conference on Robotics and Automation, pp. 2550–2555 (2015)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Petit, A., Lippiello, V., Siciliano, B. (2022). Non-rigid Tracking Using RGB-D Data. In: Siciliano, B., Ruggiero, F. (eds) Robot Dynamic Manipulation. Springer Tracts in Advanced Robotics, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-93290-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-93290-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93289-3
Online ISBN: 978-3-030-93290-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)