Skip to main content

Nonholonomic Rolling Nonprehensile Manipulation Primitive

  • Chapter
  • First Online:
Robot Dynamic Manipulation

Abstract

This chapter reviews the problem of nonholonomic rolling in nonprehensile manipulation tasks through two challenging and illustrative examples: the robotic hula-hoop and the ballbot system. The hula-hoop consists of an actuated stick and an unactuated hoop. First, the corresponding kinematic model is derived. Second, the dynamic model is derived through the Lagrange-D’Alembert equations. Then a control strategy is designed to rotate the hoop at some desired constant speed whereas positioning it over a desired point on the stick surface. A stability analysis, which guarantees ultimate boundedness of all signals of interest, is carried out. The ballbot is an underactuated and nonholonomic constrained mobile robot whose upward equilibrium point must be stabilised by active controls. Coordinate-invariant equations of motion are derived for the ballbot. The linearised equations of motion are then derived, followed by the detailed controllability analysis. Excluding the rotary degree of freedom of the ball in the inertial vertical direction, the linear system turns out to be controllable. It follows that the nonlinear system is locally controllable, and a proportional-derivative type controller is designed to locally exponentially stabilise the upward equilibrium point and the translation of the ball. Numerical simulations for these two examples illustrate the effectiveness of the proposed methods. This chapter is based on the works presented in [1,2,3,4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.wolfram.com.

  2. 2.

    See [32], remarks on Theorem 5.3.1.

  3. 3.

    This is the configuration studied in [1].

References

  1. A. Gutierrez-Giles, F. Ruggiero, V. Lippiello, B. Siciliano, Modelling and control of a robotic hula-hoop system without velocity measurements, in 20th World IFAC Congress, pp. 9808–9814 (2017)

    Google Scholar 

  2. A. Gutierrez-Giles, F. Ruggiero, V. Lippiello, B. Siciliano, Nonprehensile manipulation of an underactuated mechanical system with second-order nonholonomic constraints: The robotic hula-hoop. IEEE Robot. Autom. Lett. 3(2), 1136–1143 (2018)

    Article  Google Scholar 

  3. A.C. Satici, A. Donaire, B. Siciliano, Intrinsic dynamics and total energy-shaping control of the ballbot systems. Int. J. Control 90, 2734–2747 (2017)

    Article  MathSciNet  Google Scholar 

  4. A.C. Satici, F. Ruggiero, V. Lippiello, and B. Siciliano, Intrinsic Euler-Lagrange dynamics and control analysis of the ballbot, in 2016 American Control Conference, pp. 5685–5690 (2016)

    Google Scholar 

  5. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning and Control (Springer, London, UK, 2009)

    Google Scholar 

  6. D. Serra, J. Ferguson, F. Ruggiero, A. Siniscalco, A. Petit, V. Lippiello, B. Siciliano. On the experiments about the nonprehensile reconfiguration of a rolling sphere on a plate, in 26th Mediterranean Conference on Control and Automation, pp. 13–20, Zadar, HR (2018)

    Google Scholar 

  7. H. Date, M. Sampei, M. Ishikawa, M. Koga, Simultaneous control of position and orientation for ball plate manipulation problem based on time state control form. IEEE Trans. Robot. Autom. 20(3), 465–480 (2004)

    Article  Google Scholar 

  8. A. Marigo, A. Bicchi, Rolling bodies with regular surface: Controllability theory and applications. IEEE Trans. Autom. Control 45(9), 1586–1599 (2000)

    Article  MathSciNet  Google Scholar 

  9. G. Oriolo, M. Vendittelli, A framework for the stabilization of general nonholonomic systems with an application to the plate-ball mechanism. IEEE Trans. Rob. 21(2), 162–175 (2005)

    Article  Google Scholar 

  10. K.-K. Lee, G. Bätz, and D. Wollherr. Basketball robot: Ball on plate with pure haptic information, in 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, pp. 2410–2415 (2008)

    Google Scholar 

  11. L. Cui, J.S. Dai, A coordinate-free approach to instantaneous kinematics of two rigid objects with rolling contact and its implications for trajectory planning, in 2009 IEEE International Conference on Robotics and Automation, Kobe, J, pp. 612–617 (2009)

    Google Scholar 

  12. R. Gahleitner, Ball on ball: Modeling and control of a novel experiment set-up. IFAC-PapersOnLine 48(1), 796–801 (2015)

    Article  Google Scholar 

  13. S.-Y. Liu, Y. Rizal, and M.-T. Ho. Stabilization of a ball and sphere system using feedback linearization and sliding mode control, in 8th Asian Control Conference, Kaohsiung, Taiwan, pp. 1334–1339 (2011)

    Google Scholar 

  14. J. Nishizaki, S. Nakamura, M. Sampei, Modeling and control of hula-hoop system, in 48th IEEE Conference on Decision and Control, Shanghai, C (2009), pp. 4125–4130

    Google Scholar 

  15. D.J. Montana, The kinematics of contact and grasp. Int. J. Robot. Res. 7(3), 17–32 (1988)

    Article  Google Scholar 

  16. R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC press, 1994)

    Google Scholar 

  17. M.W. Spong, Partial feedback linearization of underactuated mechanical systems, in 1994 IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, pp. 314–321 (1994)

    Google Scholar 

  18. G. Oriolo, Y. Nakamura, Control of mechanical systems with second-order nonholonomic constraints: Underactuated manipulators, in 30th IEEE Conference on Decision and Control, pp. 2398–2403 (1991)

    Google Scholar 

  19. M. Reyhanoglu, A. van der Schaft, N.H. McClamroch, I. Kolmanovsky, Dynamics and control of a class of underactuated mechanical systems. IEEE Trans. Autom. Control 44(9), 1663–1671 (1999)

    Article  MathSciNet  Google Scholar 

  20. R.W. Brockett, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory (Birkhauser, 1983), pp. 181–191

    Google Scholar 

  21. H.J. Sussmann, Subanalytic sets and feedback control. J. Differ. Equ. 31(1), 31–52 (1979)

    Article  MathSciNet  Google Scholar 

  22. J.-M. Coron, On the stabilization in finite time of locally controllable systems by means of continuous time-varying feedback law. SIAM J. Control. Optim. 33(3), 804–833 (1995)

    Article  MathSciNet  Google Scholar 

  23. H.J. Sussmann, V. Jurdjevic, Controllability of nonlinear systems. J. Differ. Equ. 12(1), 95–116 (1972)

    Article  MathSciNet  Google Scholar 

  24. R. Olfati-Saber, Cascade normal forms for underactuated mechanical systems. in 39th IEEE Conference on Decision and Control (2000), pp. 2162–2167

    Google Scholar 

  25. A. De Luca, G. Oriolo, Modelling and control of nonholonomic mechanical systems, in Kinematics and Dynamics of Multi-body Systems (Springer, 1995), pp. 277–342

    Google Scholar 

  26. A. Donaire, J.G. Romero, R. Ortega, B. Siciliano, M. Crespo, Robust IDA-PBC for underactuated mechanical systems subject to matched disturbances. Int. J. Robust Nonlinear Control 27(6), 1000–1016 (2017)

    Article  MathSciNet  Google Scholar 

  27. A.S. Shiriaev, L.B. Freidovich, S.V. Gusev, Transverse linearization for controlled mechanical systems with several passive degrees of freedom. IEEE Trans. Autom. Control 55(4), 893–906 (2010)

    Article  MathSciNet  Google Scholar 

  28. A.S. Shiriaev, L.B. Freidovich, M.W. Spong, Controlled invariants and trajectory planning for underactuated mechanical systems. IEEE Trans. Autom. Control 59(9), 2555–2561 (2014)

    Article  MathSciNet  Google Scholar 

  29. A. Donaire, R. Mehra, R. Ortega, S. Satpute, J.G. Romero, F. Kazi, N.M. Sing, Shaping the energy of mechanical systems without solving partial differential equations. IEEE Trans. Autom. Control 61(4), 1051–1056 (2016)

    Article  MathSciNet  Google Scholar 

  30. Y.-L. Gu, Y. Xu, A normal form augmentation approach to adaptive control of space robot systems. Dyn. Control 5(3), 275–294 (1995)

    Article  MathSciNet  Google Scholar 

  31. H.K. Khalil, Nonlinear Systems (Prentice Hall, 2002)

    Google Scholar 

  32. M. Vidyasagar, Nonlinear Systems Analysis, 2nd edn. (Society for Industrial and Applied Mathematics, Philadelphia, PA, 2002)

    Google Scholar 

  33. C.-T. Chen, Linear System Theory and Design, 3rd edn. (Oxford University Press, 1999)

    Google Scholar 

  34. A. Shiriaev, J.W. Perram, C. Canudas-de Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach. IEEE Trans. Autom. Control 50(8), 1164–1176 (2005)

    Google Scholar 

  35. S. Bittanti, A.J. Laub, J.C. Willems, The Riccati Equation, 1st edn. (Springer, 1991)

    Google Scholar 

  36. A.P. Seyranian, A.O. Belyakov, How to twirl a hula hoop. Am. J. Phys. 79(7), 712–715 (2011)

    Article  Google Scholar 

  37. F. Ficuciello, L. Villani, B. Siciliano, Variable impedance control of redundant manipulators for intuitive human-robot physical interaction. IEEE Trans. Rob. 31(4), 850–863 (2015)

    Article  Google Scholar 

  38. H.G. Nguyen, J. Morrell, K.D. Mullens, A.B. Burmeister, S. Miles, N. Farrington, K.M. Thomas, D.W. Gage, Segway robotic mobility platform, in Mobile Robots XVII, vol. 5609 (SPIE, 2004), pp. 207–220

    Google Scholar 

  39. T. Lauwers, G. Kantor, R. Hollis, One is enough! in 12th International Symposium for Robotics Research, pp. 12–15 (2005)

    Google Scholar 

  40. T.B. Lauwers, G.A. Kantor, R.L. Hollis, A dynamically stable single-wheeled mobile robot with inverse mouse-ball drive, in 2006 IEEE International Conference on Robotics and Automation, pp. 2884–2889 (2006)

    Google Scholar 

  41. U. Nagarajan, A. Mampetta, G.A. Kantor, R.L. Hollis, State transition, balancing, station keeping, and yaw control for a dynamically stable single spherical wheel mobile robot, in 2009 IEEE International Conference on Robotics and Automation, pp. 998–1003 (2009)

    Google Scholar 

  42. U. Nagarajan, G. Kantor, R. Hollis, The ballbot: An omnidirectional balancing mobile robot. Int. J. Robot. Res. 33(6), 917–930 (2013)

    Article  Google Scholar 

  43. L. Hertig, D. Schindler, M. Bloesch, C.D. Remy, R. Siegwart, Unified state estimation for a ballbot, in 2013 IEEE International Conference on Robotics and Automation, pp. 2471–2476 (2013)

    Google Scholar 

  44. S. Leutenegger, P. Fankhauser, Modeling and control of a ballbot. Bachelor thesis, Swiss Federal Institute of Technology (2010)

    Google Scholar 

  45. M. Kumaga, T. Ochiai. Development of a robot balanced on a ball: Application of passive motion to transport, in 2009 IEEE International Conference on Robotics and Automation, pp. 4106–4111 (2009)

    Google Scholar 

  46. P. Asgari, P. Zarafshan, S.A.A. Moosavian, Manipulation control of an armed ballbot with stabilizer. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 229(5), 429–439 (2015)

    Google Scholar 

  47. U. Nagarajan, G. Kantor, R. Hollis, Integrated planning and control for graceful navigation of shape-accelerated underactuated balancing mobile robots, in 2012 IEEE International Conference on Robotics and Automation, pp. 136–141 (2012)

    Google Scholar 

  48. U. Nagarajan, B. Kim, R. Hollis, Planning in high-dimensional shape space for a single-wheeled balancing mobile robot with arms, in 2012 IEEE International Conference on Robotics and Automation, pp. 130–135 (2012)

    Google Scholar 

  49. C.-W. Liao, C.-C. Tsai, Y.Y. Li, C.-K. Chan, Dynamic modeling and sliding-mode control of a ball robot with inverse mouse-ball drive. In SICE Annual Conference 2008, 2951–2955 (2008)

    Google Scholar 

  50. A.N. Inal, O. Morgul, U. Saranli, A 3D dynamic model of a spherical wheeled self-balancing robot, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5381–5386 (2012)

    Google Scholar 

  51. S.R. Larimi, P. Zarafshan, S.A.A. Moosavian, A new stabilization algorithm for a two-wheeled mobile robot aided by reaction wheel. J. Dyn. Syst. Meas. Control 137(1), 011009–1–011009–8 (2015)

    Google Scholar 

  52. A.D. Lewis, R.M. Murray, Variational principles for constrained systems: theory and experiment. Int. J. Non-Linear Mech. 30(6), 793–815 (1995)

    Article  MathSciNet  Google Scholar 

  53. J. Baillieul, A.M. Bloch, P. Crouch, J. Marsden, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics (Springer, New York, 2008)

    Google Scholar 

  54. D. Schneider, Non-holonomic Euler-Poincaré equations and stability in Chaplygin’s sphere. Dyn. Syst.: Int. J. 17(2), 87–130 (2002)

    Article  Google Scholar 

  55. K.M. Lynch, F.C. Park, Modern Robotics: Mechanics, Planning, and Control, 1st edn. (Cambridge University Press, 2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Ruggiero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gutierrez-Giles, A., Satici, A.C., Donaire, A., Ruggiero, F., Lippiello, V., Siciliano, B. (2022). Nonholonomic Rolling Nonprehensile Manipulation Primitive. In: Siciliano, B., Ruggiero, F. (eds) Robot Dynamic Manipulation. Springer Tracts in Advanced Robotics, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-93290-9_7

Download citation

Publish with us

Policies and ethics