Skip to main content

Link Predictability Classes in Complex Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1072))

Included in the following conference series:

Abstract

In this paper, we study how the observed quality of a network link prediction method applied to a part of a network can be further used for the analysis of the whole network. Namely, we first show that it can be determined for a part of the network which topological features of node pairs lead to a certain level of link prediction quality. Based on it, we construct a link predictability (prediction quality) classifier for the network links. This is further used in the other part of the network for controlling the link prediction quality typical for the method and the network. The actual link prediction method is not used then already. Experiments with synthetic and real-world networks show a good performance of the proposed pipeline. The source code, the datasets and the results related to our study are publicly available on GitHub.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is also called link reconstruction sometimes. For this reason, we use these terms interchangeably in what follows.

  2. 2.

    https://github.com/andrey-antonov-j4133c/link_prediction.git.

References

  1. Bounova, G., de Weck, O.: Overview of metrics and their correlation patterns for multiple-metric topology analysis on heterogeneous graph ensembles. Phys. Rev. E 1(85) (2012). Article no. 016117

    Google Scholar 

  2. Chatterjee, A., Manohar, M., Ramadurai, G.: Statistical analysis of bus networks in India. PLoS ONE 11(12), 1–16 (2016)

    Article  Google Scholar 

  3. Cukierski, W., Hamner, B., Yang, B.: Graph-based features for supervised link prediction. In: The 2011 International Joint Conference on Neural Networks, pp. 1237–1244. IEEE (2011)

    Google Scholar 

  4. Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q.: A survey on ensemble learning. Front. Comput. Sci. 14(2), 241–258 (2019)

    Article  Google Scholar 

  5. García-Pérez, G., Aliakbarisani, R., Ghasemi, A., Serrano, M.A.: Precision as a measure of predictability of missing links in real networks. Phys. Rev. E 101, 052318 (2020)

    Google Scholar 

  6. Ghasemian, A., Hosseinmardi, H., Galstyan, A., Airoldi, E.M., Clauset, A.: Stacking models for nearly optimal link prediction in complex networks. Proc. Natl. Acad. Sci. 117(38), 23393–23400 (2020)

    Article  Google Scholar 

  7. Granger, C., Newbold, P.: Forecasting Economic Time Series. Elsevier, Amsterdam (1986)

    Google Scholar 

  8. Guimerà, R., Danon, L., Díaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68, 065103 (2003)

    Google Scholar 

  9. Kaboudan, M.A.: A measure of time series’ predictability using genetic programming applied to stock returns. J. Forecast. 18(5), 345–357 (1999)

    Article  Google Scholar 

  10. Khanafiah, D., Situngkir, H.: Social balance theory. arXiv:nlin/0405041 (2004)

  11. Kovantsev, A., Gladilin, P.: Analysis of multivariate time series predictability based on their features. In: 2020 International Conference on Data Mining Workshops (ICDMW), pp. 348–355 (2020)

    Google Scholar 

  12. Kumar, A., Singh, S.S., Singh, K., Biswas, B.: Link prediction techniques, applications, and performance: a survey. Phys. A Stat. Mech. Appl. 553, 124289 (2020)

    Google Scholar 

  13. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4) (2008). Article no. 046110

    Google Scholar 

  14. Larremore, D.B., Clauset, A., Buckee, C.O.: A network approach to analyzing highly recombinant malaria parasite genes. PLoS Comput. Biol. 9(10), 1–12 (2013)

    Article  Google Scholar 

  15. Louppe, G., Wehenkel, L., Sutera, A., Geurts, P.: Understanding variable importances in forests of randomized trees. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 1, pp. 431-439. NIPS 2013, Curran Associates Inc., Red Hook, NY, USA (2013)

    Google Scholar 

  16. Lü, L., Pan, L., Zhou, T., Zhang, Y.C., Stanley, H.E.: Toward link predictability of complex networks. Proc. Natl. Acad. Sci. 112(8), 2325–2330 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A 390(6), 1150–1170 (2011)

    Article  Google Scholar 

  18. Martínez, V., Berzal, F., Cubero, J.C.: A survey of link prediction in complex networks. ACM Comput. Surv. 49(4) (2016). Article no. 69

    Google Scholar 

  19. Pennekamp, F., et al.: The intrinsic predictability of ecological time series and its potential to guide forecasting. Ecol. Monogr. 89(2), e01359 (2019)

    Article  Google Scholar 

  20. Stavinova, E., Bochenina, K., Chunaev, P.: Predictability classes for forecasting clients behavior by transactional data. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12744, pp. 187–199. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77967-2_16

    Chapter  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the Russian Science Foundation, Agreement 17-71-30029, with co-financing of Bank Saint Petersburg, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Chunaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stavinova, E., Evmenova, E., Antonov, A., Chunaev, P. (2022). Link Predictability Classes in Complex Networks. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1072. Springer, Cham. https://doi.org/10.1007/978-3-030-93409-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93409-5_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93408-8

  • Online ISBN: 978-3-030-93409-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics