Skip to main content

Surprising Behavior of the Average Degree for a Node’s Neighbors in Growth Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1072))

Included in the following conference series:

  • 3900 Accesses

Abstract

We study the variation of the stochastic process that describes the temporal behavior of the average degree of the neighbors for a fixed node in the Barabási-Albert networks. It was previously known that the expected value of this random quantity grows logarithmically with the number of iterations. In this paper, we use the mean-field approach to derive difference stochastic equations, as well as their corresponding approximate differential equations, in order to find the dynamics of its variation in time. The noteworthy fact proved in this paper is that the variation of this process is bounded by a constant. This behavior is fundamentally different from the dynamics of variation in most known stochastic processes (e.g., the Wiener process), in which its value tends to infinity over time.

This work was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of the basic part of the scientific research state task, project FSRR-2020-0006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Almeida, M., Mendes, G., Madras Viswanathan, G., da Silva, L.R.: Scale-free homophilic network. Eur. Phys. J. B 86(38), 1–6 (2013)

    Google Scholar 

  2. Barabási, A., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Phys. A 272(1), 173–187 (1999)

    Article  Google Scholar 

  3. Bertotti, M., Modanese, G.: The configuration model for Barabasi-Albert networks. Appl. Netw. Sci. 4(1), 1–13 (2019)

    Article  MATH  Google Scholar 

  4. Bianconi, G., Barabási, A.-L.: Competition and multiscaling in evolving networks. Europhys. Lett. 54(4), 436–442 (2001)

    Article  Google Scholar 

  5. Cinardi, N., Rapisarda, A., Tsallis, C.: A generalised model for asymptotically-scale-free geographical networks. J. Stat. Mech.: Theory Exp. 2020(4), 043404 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85(21), 4633 (2000)

    Article  Google Scholar 

  7. Krapivsky, P.L., Redner, S.: Organization of growing random networks. Phys. Rev. E 63(6), 066123 (2001)

    Article  Google Scholar 

  8. Krapivsky, P.L., Redner, S., Leyvraz, F.: Connectivity of growing random networks. Phys. Rev. Lett. 85(21), 4629 (2000)

    Article  Google Scholar 

  9. Mironov, S., Sidorov, S., Malinskii, I.: Degree-degree correlation in networks with preferential attachment based growth. In: Teixeira, A.S., Pacheco, D., Oliveira, M., Barbosa, H., Gonçalves, B., Menezes, R. (eds.) CompleNet-Live 2021. SPC, pp. 51–58. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81854-8_5

    Chapter  MATH  Google Scholar 

  10. Pachon, A., Sacerdote, L., Yang, S.: Scale-free behavior of networks with the copresence of preferential and uniform attachment rules. Phys. D 371, 1–12 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pal, S., Makowski, A.: Asymptotic degree distributions in large (homogeneous) random networks: a little theory and a counterexample. IEEE Trans. Netw. Sci. Eng. 7(3), 1531–1544 (2020)

    Article  MathSciNet  Google Scholar 

  12. Piva, G.G., Ribeiro, F.L., Mata, A.S.: Networks with growth and preferential attachment: modelling and applications. J. Complex Netw. 9(1), cnab008 (2021)

    Article  MathSciNet  Google Scholar 

  13. Rak, R., Rak, E.: The fractional preferential attachment scale-free network model. Entropy 22(5), 509 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shang, K.K., Yang, B., Moore, J., Ji, Q., Small, M.: Growing networks with communities: a distributive link model. Chaos 30(4), 041101 (2020)

    Article  MathSciNet  Google Scholar 

  15. Sidorov, S., Mironov, S.: Growth network models with random number of attached links. Phys. A: Stat. Mech. Appl. 576, 126041 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sidorov, S., Mironov, S., Malinskii, I., Kadomtsev, D.: Local degree asymmetry for preferential attachment model. Stud. Comput. Intell. 944, 450–461 (2021)

    Article  Google Scholar 

  17. Sidorov, S., Mironov, S., Agafonova, N., Kadomtsev, D.: Temporal behavior of local characteristics in complex networks with preferential attachment-based growth. Symmetry 13(9), 1567 (2021)

    Article  Google Scholar 

  18. Tsiotas, D.: Detecting differences in the topology of scale-free networks grown under time-dynamic topological fitness. Sci. Rep. 10(1), 1–16 (2020)

    Article  MathSciNet  Google Scholar 

  19. Yao, D., van der Hoorn, P., Litvak, N.: Average nearest neighbor degrees in scale-free networks. Internet Math. 2018, 1–38 (2018)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Sidorov .

Editor information

Editors and Affiliations

Appendices

A The Proof of Lemma 1

Proof

Denote \(\beta _i(t):=\frac{s_i(t)}{d_i^2(t)}\). We have

$$\begin{aligned}&\varDelta \beta _i(t+1):=\beta _i(t+1)-\beta _i(t) \nonumber \\&\qquad \qquad \quad =\,\left( \frac{s_i(t)+m}{(d_i(t)+1)^2}-\frac{s_i(t)}{d_i^2(t)}\right) \xi _i^{t+1}+\left( \frac{s_i(t)+1}{(d_i(t)+1)^2}-\frac{s_i(t)}{d_i^2(t)}\right) \eta _i^{t+1}. \end{aligned}$$
(5)

Since

$$ \mathbb {E}(\xi _i^{t+1})=\frac{d_i(t)}{2t},\ \mathbb {E}(\eta _i^{t+1})=\frac{s_i(t)}{2t}, $$

we get the difference equation

$$\begin{aligned}&\mathbb {E}\left( \varDelta \beta _1(t+1)|G_t\right) \nonumber \\&\qquad =\,\left( \frac{s_i(t)+m}{(d_i(t)+1)^2}-\frac{s_i(t)}{d_i^2(t)}\right) \frac{d_i(t)}{2t}+\left( \frac{s_i(t)+1}{(d_i(t)+1)^2}-\frac{s_i(t)}{d_i^2(t)}\right) \frac{s_i(t)}{2t} \nonumber \\&\qquad =\,\frac{md_i(t)}{2t(d_i(t)+1)^2}-\frac{s_i(t)}{t(d_i(t)+1)^2}-\frac{s_i(t)}{2td_i(t)(d_i(t)+1)^2}+\frac{s_i(t)}{2td_i^2(t)} \nonumber \\&\qquad \qquad =\, -\frac{s_i(t)}{2td_i^2(t)}+\frac{m}{2td_i(t)}+\frac{3s_i(t)}{2td_i^3(t)}-\frac{m}{td_i^2(t)}-\frac{4s_i(t)}{td_i^4(t)}+O\left( \frac{s_i(t)}{td_i^5t)}\right) . \end{aligned}$$
(6)

Using \(\mathbb {E}\left( \frac{1}{d_i(t)}\right) \sim \frac{i^{\frac{1}{2}}}{mt^{\frac{1}{2}}}\), we get the following approximate first order differential equation:

$$ \frac{df(t)}{dt}=-\frac{f(t)}{2t} + \frac{i^{\frac{1}{2}}}{2t^{\frac{3}{2}}}, $$

the solution of which is \(f(t)=\frac{1}{2} \left( \frac{i}{t}\right) ^{\frac{1}{2}}(\log t+b)\), where b is a constant.

   \(\square \)

B The Proof of Lemma 2

To prove Lemma 2 we need two auxiliary Lemmas 3 and 4.

The next lemma complements the results of papers [9, 16].

Lemma 3

$$ \mathbb {E}\left( \alpha _i(t)\right) \sim \frac{m}{2}\log t+a-\frac{1}{2} \left( \frac{i}{t}\right) ^{\frac{1}{2}}\log t+\frac{1}{2} b\left( \frac{i}{t}\right) ^{\frac{1}{2}}, $$

where a is a constant.

Proof

We have

$$\begin{aligned}&\varDelta \alpha _i(t+1):=\alpha _i(t+1)-\alpha _i(t) \nonumber \\&\qquad \qquad \qquad \qquad =\,\left( \frac{s_i(t)+m}{d_i(t)+1}-\frac{s_i(t)}{d_i(t)}\right) \xi _i^{t+1}+\left( \frac{s_i(t)+1}{d_i(t)+1}-\frac{s_i(t)}{d_i(t)}\right) \eta _i^{t+1}. \end{aligned}$$
(7)

Since

$$ \mathbb {E}(\xi _i^{t+1})=\frac{d_i(t)}{2t},\ \mathbb {E}(\eta _i^{t+1})=\frac{s_i(t)}{2t}, $$

we get the difference equation

$$\begin{aligned}&\mathbb {E}\left( \varDelta \beta _1(t+1)|G_t\right) \nonumber \\&\qquad \qquad =\,\left( \frac{s_i(t)+m}{d_i(t)+1}-\frac{s_i(t)}{d_i(t)}\right) \frac{d_i(t)}{2t}+\left( \frac{s_i(t)+1}{d_i(t)+1}-\frac{s_i(t)}{d_i(t)}\right) \frac{s_i(t)}{2t} \nonumber \\&\qquad \qquad \qquad \qquad =\,\frac{m}{2t}+\frac{s_i(t)}{2t(d_i(t)+1)}-\frac{m}{2td_i(t)(d_i(t)+1)} \nonumber \\&\qquad \qquad \qquad =\,\frac{m}{2t}+\frac{s_i(t)}{2td_i^2(t)}-\frac{m}{2td_i(t)}-\frac{s_i(t)}{td_i^3(t)}+\frac{m}{2td_i^2(t)}+O\left( \frac{s_i(t)}{td_i^4(t)}\right) . \end{aligned}$$
(8)

Using Lemma 1, we get the following approximate first order differential equation:

$$ \frac{df(t)}{dt}=\frac{m}{2t} + \frac{i^{\frac{1}{2}}}{4t^{\frac{3}{2}}}\log t+ \frac{bi^{\frac{1}{2}}}{4t^{\frac{3}{2}}}-\frac{i^{\frac{1}{2}}}{2t^{\frac{3}{2}}}, $$

the solution of which is \(f(t)=\frac{m}{2}\log t-\frac{1}{2} \left( \frac{i}{t}\right) ^{\frac{1}{2}}\log t+\frac{1}{2} b\left( \frac{i}{t}\right) ^{\frac{1}{2}}+a\), where a is a constant.

   \(\square \)

Lemma 4

$$ \mathbb {E}\left( \frac{s_i^2(t)}{d_i^3(t)}\right) \sim m \left( \frac{i}{t}\right) ^{\frac{1}{2}}\left( \frac{1}{4}\log ^2 t+\frac{b}{2}\log t+c\right) , $$

where c is a constant.

Proof

We have

$$\begin{aligned}&\varDelta _i(t+1):=\frac{s_i^2(t)(t+1)}{d_i^3(t)(t+1)}-\frac{s_i^2(t)}{d_i^3(t)} \nonumber \\&\qquad \qquad \quad =\,\left( \frac{(s_i(t)+m)^2}{(d_i(t)+1)^3}-\frac{s_i^2(t)}{d_i^3(t)}\right) \xi _i^{t+1}+\left( \frac{(s_i(t)+1)^2}{(d_i(t)+1)^3}-\frac{s_i^2(t)}{d_i^3(t)}\right) \eta _i^{t+1}. \end{aligned}$$
(9)

Since

$$ \mathbb {E}(\xi _i^{t+1})=\frac{d_i(t)}{2t},\ \mathbb {E}(\eta _i^{t+1})=\frac{s_i(t)}{2t}, $$

we get the difference equation

$$\begin{aligned}&\mathbb {E}\left( \varDelta _i(t+1)|G_t\right) \nonumber \\&\qquad =\,\left( \frac{(s_i(t)+m)^2}{(d_i(t)+1)^3}-\frac{s_i^2(t)}{d_i^3(t)}\right) \frac{d_i(t)}{2t}+\left( \frac{(s_i(t)+1)^2}{(d_i(t)+1)^3}-\frac{s_i^2(t)}{d_i^3(t)}\right) \frac{s_i(t)}{2t} \nonumber \\&\quad =\,\frac{ms_i(t)d_i(t)}{t(d_i(t)+1)^3}+\frac{m^2d_i(t)}{2t(d_i(t)+1)^3}-\frac{3s_i^2(t)}{2t(d_i(t)+1)^3}-\frac{3s_i^2(t)}{2td_i(t)(d_i(t)+1)^3} \nonumber \\&\qquad \qquad \qquad \quad -\,\frac{s_i^2(t)}{2td_i^2(t)(d_i(t)+1)^3}+\frac{s_i^2(t)}{td_i^3(t)}+\frac{s_i(t)}{2td_i^3(t)} \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad =\,-\frac{s_i^2(t)}{2td_i^3(t)}+\frac{ms_i(t)}{td_i^2(t)}+O\left( \frac{s_i^2(t)}{td_i^4(t)}\right) . \end{aligned}$$
(10)

Using Lemma 1, we get the following approximate first order differential equation:

$$ \frac{df(t)}{dt}=-\frac{f(t)}{2t} + \frac{m i^{\frac{1}{2}}}{2t^{\frac{3}{2}}}\log t + \frac{bmi^{\frac{1}{2}}}{2t^{\frac{3}{2}}}, $$

the solution of which is \(f(t)=m \left( \frac{i}{t}\right) ^{\frac{1}{2}}\left( \frac{1}{4}\log ^2 t+\frac{b}{2}\log t+c\right) \), where c is a constant.

   \(\square \)

Proof

(of Lemma 2) We have

$$\begin{aligned}&\varDelta \alpha _i^2(t+1):=\alpha _i^2(t+1)-\alpha _i^2(t) \nonumber \\&\qquad \qquad \,\, =\,\left( \frac{(s_i(t)+m)^2}{(d_i(t)+1)^2}-\frac{s_i^2(t)}{d_i^2(t)}\right) \xi _i^{t+1}+\left( \frac{(s_i(t)+1)^2}{(d_i(t)+1)^2}-\frac{s_i^2(t)}{d_i^2(t)}\right) \eta _i^{t+1}. \end{aligned}$$
(11)

Since

$$ \mathbb {E}(\xi _i^{t+1})=\frac{d_i(t)}{2t},\ \mathbb {E}(\eta _i^{t+1})=\frac{s_i(t)}{2t}, $$

we get the difference equation

$$\begin{aligned}&\quad \mathbb {E}\left( \varDelta \alpha _i^2(t+1)|G_t\right) \nonumber \\&\qquad \quad =\,\left( \frac{(s_i(t)+m)^2}{(d_i(t)+1)^2}-\frac{s_i^2(t)}{d_i^2(t)}\right) \frac{d_i(t)}{2t}+\left( \frac{(s_i(t)+1)^2}{(d_i(t)+1)^2}-\frac{s_i^2(t)}{d_i^2(t)}\right) \frac{s_i(t)}{2t} \nonumber \\&=\,\frac{ms_i(t)d_i(t)}{t(d_i(t)+1)^2}+\frac{m^2}{2t(d_i(t)+1)^2}-\frac{s_i^2(t)}{t(d_i(t)+1)^2}-\frac{s_i^2(t)}{2td_i(t)(d_i(t)+1)^2}+\frac{s_i^2(t)}{td_i^2(t)}+\frac{s_i(t)}{2td_i(t)} \nonumber \\&\qquad \qquad \,\, =\,\frac{ms_i(t)}{td_i(t)} +\frac{3s_i^2(t)}{2td_i^3(t)}-\left( 2m-\frac{1}{2}\right) \frac{s_i(t)}{td_i^2(t)}+\frac{m^2}{2td_i(t)}+O\left( \frac{s_i^2(t)}{td_i^4(t)}\right) . \end{aligned}$$
(12)

Using Lemmas 1, 3 and 4, we get the following approximate first order differential equation:

$$\begin{aligned}&\frac{df(t)}{dt}= \frac{m}{t} \left( \frac{m}{2}\log t+a-\frac{1}{2} \left( \frac{i}{t}\right) ^{\frac{1}{2}}\log t+\frac{1}{2} b\left( \frac{i}{t}\right) ^{\frac{1}{2}}\right) \nonumber \\&\qquad \qquad \qquad \qquad +\,\frac{3m}{2t} \left( \frac{i}{t}\right) ^{\frac{1}{2}}\left( \frac{1}{4}\log ^2 t+\frac{b}{2}\log t+c\right) \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad -\,\left( 2m-\frac{1}{2}\right) \frac{1}{2} \left( \frac{i}{t}\right) ^{\frac{1}{2}}(\log t+b) + \frac{mi^{\frac{1}{2}}}{2t^{\frac{3}{2}}}, \end{aligned}$$
(13)

the solution of which follows

$$ f(t)=\frac{m^2}{4}\log ^2 t+am\log t +d-\frac{3}{4}\,m \left( \frac{i}{t}\right) ^{\frac{1}{2}} \log ^2 t+O\left( \frac{\log t}{t^{\frac{1}{2}}}\right) , $$

where d is a constant.

   \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sidorov, S., Mironov, S., Tyshkevich, S. (2022). Surprising Behavior of the Average Degree for a Node’s Neighbors in Growth Networks. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1072. Springer, Cham. https://doi.org/10.1007/978-3-030-93409-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93409-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93408-8

  • Online ISBN: 978-3-030-93409-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics