Skip to main content

Markov Modulated Process to Model Human Mobility

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1072))

Included in the following conference series:

  • 4003 Accesses

Abstract

We introduce a Markov Modulated Process (MMP) to describe human mobility. We represent the mobility process as a time-varying graph, where a link specifies a connection between two nodes (humans) at any discrete time step. Each state of the Markov chain encodes a certain modification to the original graph. We show that our MMP model successfully captures the main features of a random mobility simulator, in which nodes moves in a square region. We apply our MMP model to human mobility, measured in a library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This paper is a bridgement of the master theses of B. Chang [4] and L. Yang [25].

  2. 2.

    The Python code of our mobility simulator is available on GitHub: https://github.com/twente/mmp-mobility-model.

  3. 3.

    The spacing in the lattice is \(10/6 \approx 1.667\) which exceeds \(d=1.5\); therefore, there are no links in the initial graph at \(k=0\).

References

  1. Barbosa, H., et al.: Human mobility: models and applications. Phys. Rep. 734, 1–74 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barmak, D.H., Dorso, C.O., Otero, M.: Modelling dengue epidemic spreading with human mobility. Phys. A 447, 129–140 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Causer, L., Carmen Bañuls, M., Garrahan, J.P.: Optimal sampling of dynamical large deviations via matrix product states. PRE 103, 062144 (2021)

    Article  MathSciNet  Google Scholar 

  4. Chang, B.: Modeling the spread of epidemics, MSc. thesis, Delft, University of Technology (2021). http://resolver.tudelft.nl/uuid:72206da3-4652-4a10-90bd-2fdd2a1e98f6

  5. Feng, J., Yang, Z., Xu, F., Yu, H., Wang, M., Li, Y.: Learning to simulate human mobility. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data, pp. 3426–3433 (2020)

    Google Scholar 

  6. Fischer, W., Meier-Hellstern, K.: The Markov-modulated Poisson process (MMPP) cookbook. Perform. Eval. 18(2), 149–171 (1993). https://doi.org/10.1103/PhysRevE.103.062144

    Article  MathSciNet  MATH  Google Scholar 

  7. Flores, M.A.R., Papadopoulos, F.: Similarity forces and recurrent components in human face-to-face interaction networks. Phys. Rev. Lett. 121(25), 258301 (2018)

    Article  Google Scholar 

  8. Hossmann, T., Spyropoulos, T., Legendre, F.: A complex network analysis of human mobility. In: 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 876–881. IEEE (2011)

    Google Scholar 

  9. Huang, Z., et al.: Modeling real-time human mobility based on mobile phone and transportation data fusion. Transp. Res. Part C: Emerg. Technol. 96, 251–269 (2018)

    Article  Google Scholar 

  10. Karamshuk, D., Boldrini, C., Conti, M., Passarella, A.: Human mobility models for opportunistic networks. IEEE Commun. Mag. 49(12), 157–165 (2011)

    Article  Google Scholar 

  11. Mari, L., et al.: Modelling cholera epidemics: the role of waterways, human mobility and sanitation. J. R. Soc. Interface 9(67), 376–388 (2012)

    Article  Google Scholar 

  12. Meloni, S., Perra, N., Arenas, A., Gómez, S., Moreno, Y., Vespignani, A.: Modeling human mobility responses to the large-scale spreading of infectious diseases. Sci. Rep. 1(1), 1–7 (2011)

    Article  Google Scholar 

  13. Nguyen, A.D., Sénac, P., Ramiro, V., Diaz, M.: STEPS - an approach for human mobility modeling. In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont, A., Scoglio, C. (eds.) NETWORKING 2011. LNCS, vol. 6640, pp. 254–265. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20757-0_20

    Chapter  Google Scholar 

  14. Pappalardo, L., Rinzivillo, S., Simini, F.: Human mobility modelling: exploration and preferential return meet the gravity model. Procedia Comput. Sci. 83, 934–939 (2016)

    Article  Google Scholar 

  15. Schneider, C.M., Belik, V., Couronné, T., Smoreda, Z., González, M.C.: Unravelling daily human mobility motifs. J. R. Soc. Interface 10(84), 20130246 (2013)

    Article  Google Scholar 

  16. Solmaz, G., Turgut, D.: A survey of human mobility models. IEEE Access 7, 125711–125731 (2019)

    Article  Google Scholar 

  17. Song, C., Koren, T., Wang, P., Barabási, A.L.: Modelling the scaling properties of human mobility. Nat. Phys. 6(10), 818–823 (2010)

    Article  Google Scholar 

  18. Starnini, M., Baronchelli, A., Pastor-Satorras, R.: Modeling human dynamics of face-to-face interaction networks. Phys. Rev. Lett. 110(16), 168701 (2013)

    Article  Google Scholar 

  19. Tizzoni, M., et al.: On the use of human mobility proxies for modeling epidemics. PLoS Comput. Biol. 10(7), e1003716 (2014)

    Article  Google Scholar 

  20. Van Mieghem, P.: Performance Analysis of Complex Networks and Systems. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  21. Van Mieghem, P., Achterberg, M.A., Liu, Q.: Power-law decay in epidemics is likely due to interactions with the time-variant contact graph. Delft University of Technology, report 20201201 (2020). https://nas.ewi.tudelft.nl/people/Piet/TUDelftReports.html

  22. Van Mieghem, P., Steyaert, B., Petit, G.H.: Performance of cell loss priority management schemes in a single server queue. Int. J. Commun. Syst. 10(4), 161–180 (1997)

    Article  Google Scholar 

  23. Wang, J., Kong, X., Xia, F., Sun, L.: Urban human mobility: data-driven modeling and prediction. ACM SIGKDD Explor. Newsl. 21(1), 1–19 (2019)

    Article  Google Scholar 

  24. Wesolowski, A., et al.: Quantifying the impact of human mobility on malaria. Science 338(6104), 267–270 (2012)

    Article  Google Scholar 

  25. Yang, L.: Developing a Markov-modulated process model for mobility processes, MSc. thesis, Delft, University of Technology (2021). http://resolver.tudelft.nl/uuid:d37a389d-4145-4ebd-95fc-3dbe351158ad

  26. Yang, S., Yang, X., Zhang, C., Spyrou, E.: Using social network theory for modeling human mobility. IEEE Netw. 24(5), 6–13 (2010)

    Article  Google Scholar 

  27. Zhou, Y., Xu, R., Hu, D., Yue, Y., Li, Q., Xia, J.: Effects of human mobility restrictions on the spread of COVID-19 in Shenzhen, China: a modelling study using mobile phone data. Lancet Digit. Health 2(8), e417–e424 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. ir. Sascha Hoogendoorn-Lanser for sharing the library data, which has been collected as part of an ongoing project led by her at TU Delft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Sensi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, B. et al. (2022). Markov Modulated Process to Model Human Mobility. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1072. Springer, Cham. https://doi.org/10.1007/978-3-030-93409-5_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93409-5_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93408-8

  • Online ISBN: 978-3-030-93409-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics