Abstract
We introduce a Markov Modulated Process (MMP) to describe human mobility. We represent the mobility process as a time-varying graph, where a link specifies a connection between two nodes (humans) at any discrete time step. Each state of the Markov chain encodes a certain modification to the original graph. We show that our MMP model successfully captures the main features of a random mobility simulator, in which nodes moves in a square region. We apply our MMP model to human mobility, measured in a library.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
The Python code of our mobility simulator is available on GitHub: https://github.com/twente/mmp-mobility-model.
- 3.
The spacing in the lattice is \(10/6 \approx 1.667\) which exceeds \(d=1.5\); therefore, there are no links in the initial graph at \(k=0\).
References
Barbosa, H., et al.: Human mobility: models and applications. Phys. Rep. 734, 1–74 (2018)
Barmak, D.H., Dorso, C.O., Otero, M.: Modelling dengue epidemic spreading with human mobility. Phys. A 447, 129–140 (2016)
Causer, L., Carmen Bañuls, M., Garrahan, J.P.: Optimal sampling of dynamical large deviations via matrix product states. PRE 103, 062144 (2021)
Chang, B.: Modeling the spread of epidemics, MSc. thesis, Delft, University of Technology (2021). http://resolver.tudelft.nl/uuid:72206da3-4652-4a10-90bd-2fdd2a1e98f6
Feng, J., Yang, Z., Xu, F., Yu, H., Wang, M., Li, Y.: Learning to simulate human mobility. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data, pp. 3426–3433 (2020)
Fischer, W., Meier-Hellstern, K.: The Markov-modulated Poisson process (MMPP) cookbook. Perform. Eval. 18(2), 149–171 (1993). https://doi.org/10.1103/PhysRevE.103.062144
Flores, M.A.R., Papadopoulos, F.: Similarity forces and recurrent components in human face-to-face interaction networks. Phys. Rev. Lett. 121(25), 258301 (2018)
Hossmann, T., Spyropoulos, T., Legendre, F.: A complex network analysis of human mobility. In: 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 876–881. IEEE (2011)
Huang, Z., et al.: Modeling real-time human mobility based on mobile phone and transportation data fusion. Transp. Res. Part C: Emerg. Technol. 96, 251–269 (2018)
Karamshuk, D., Boldrini, C., Conti, M., Passarella, A.: Human mobility models for opportunistic networks. IEEE Commun. Mag. 49(12), 157–165 (2011)
Mari, L., et al.: Modelling cholera epidemics: the role of waterways, human mobility and sanitation. J. R. Soc. Interface 9(67), 376–388 (2012)
Meloni, S., Perra, N., Arenas, A., Gómez, S., Moreno, Y., Vespignani, A.: Modeling human mobility responses to the large-scale spreading of infectious diseases. Sci. Rep. 1(1), 1–7 (2011)
Nguyen, A.D., Sénac, P., Ramiro, V., Diaz, M.: STEPS - an approach for human mobility modeling. In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont, A., Scoglio, C. (eds.) NETWORKING 2011. LNCS, vol. 6640, pp. 254–265. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20757-0_20
Pappalardo, L., Rinzivillo, S., Simini, F.: Human mobility modelling: exploration and preferential return meet the gravity model. Procedia Comput. Sci. 83, 934–939 (2016)
Schneider, C.M., Belik, V., Couronné, T., Smoreda, Z., González, M.C.: Unravelling daily human mobility motifs. J. R. Soc. Interface 10(84), 20130246 (2013)
Solmaz, G., Turgut, D.: A survey of human mobility models. IEEE Access 7, 125711–125731 (2019)
Song, C., Koren, T., Wang, P., Barabási, A.L.: Modelling the scaling properties of human mobility. Nat. Phys. 6(10), 818–823 (2010)
Starnini, M., Baronchelli, A., Pastor-Satorras, R.: Modeling human dynamics of face-to-face interaction networks. Phys. Rev. Lett. 110(16), 168701 (2013)
Tizzoni, M., et al.: On the use of human mobility proxies for modeling epidemics. PLoS Comput. Biol. 10(7), e1003716 (2014)
Van Mieghem, P.: Performance Analysis of Complex Networks and Systems. Cambridge University Press, Cambridge (2014)
Van Mieghem, P., Achterberg, M.A., Liu, Q.: Power-law decay in epidemics is likely due to interactions with the time-variant contact graph. Delft University of Technology, report 20201201 (2020). https://nas.ewi.tudelft.nl/people/Piet/TUDelftReports.html
Van Mieghem, P., Steyaert, B., Petit, G.H.: Performance of cell loss priority management schemes in a single server queue. Int. J. Commun. Syst. 10(4), 161–180 (1997)
Wang, J., Kong, X., Xia, F., Sun, L.: Urban human mobility: data-driven modeling and prediction. ACM SIGKDD Explor. Newsl. 21(1), 1–19 (2019)
Wesolowski, A., et al.: Quantifying the impact of human mobility on malaria. Science 338(6104), 267–270 (2012)
Yang, L.: Developing a Markov-modulated process model for mobility processes, MSc. thesis, Delft, University of Technology (2021). http://resolver.tudelft.nl/uuid:d37a389d-4145-4ebd-95fc-3dbe351158ad
Yang, S., Yang, X., Zhang, C., Spyrou, E.: Using social network theory for modeling human mobility. IEEE Netw. 24(5), 6–13 (2010)
Zhou, Y., Xu, R., Hu, D., Yue, Y., Li, Q., Xia, J.: Effects of human mobility restrictions on the spread of COVID-19 in Shenzhen, China: a modelling study using mobile phone data. Lancet Digit. Health 2(8), e417–e424 (2020)
Acknowledgements
The authors thank Dr. ir. Sascha Hoogendoorn-Lanser for sharing the library data, which has been collected as part of an ongoing project led by her at TU Delft.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chang, B. et al. (2022). Markov Modulated Process to Model Human Mobility. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1072. Springer, Cham. https://doi.org/10.1007/978-3-030-93409-5_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-93409-5_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93408-8
Online ISBN: 978-3-030-93409-5
eBook Packages: EngineeringEngineering (R0)