Skip to main content

Retrieval of Redundant Hyperlinks After Attack Based on Hyperbolic Geometry of Web Complex Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1072))

Included in the following conference series:

  • 3704 Accesses

Abstract

The Internet and the Web can be described as huge networks of connected computers, connected web pages, or connected users. Analyzing link retrieval methods on the Internet and the Web as examples of complex networks is of particular importance. The recovery of complex networks is an important issue that has been extensively used in various fields. Much work has been done to measure and improve the stability of complex networks during attacks. Recently, many studies have focused on the network recovery strategies after the attack. Predicting the appropriate redundant links in a way that the network can be recovered at the lowest cost and fastest time after attacks or interruptions will be critical in a disaster. In addition, real-world networks such as the World Wide Web are no exception, and many attacks are made on hyperlinks between web pages, and the issue of predicting redundant hyperlinks on this World Wide Web is also very important.

In this paper, different kinds of attack strategies are provided and some retrieval strategies based on link prediction methods are proposed to recover the hyperlinks after failure or attack. Besides that, a new link prediction method based on the hyperbolic geometry of the complex network is proposed to retrieve redundant hyperlinks and the numerical simulation reveals its superiority that the state-of-the-art algorithms in recovering the attacked hyperlinks especially in the case of attacks based on edge betweenness strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matisziw, T.C., Murray, A.T., Grubesic, T.H.: Strategic network restoration. Netw. Spat. Econ. 10(3), 345–361 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chaoqi, F., et al.: Complex networks under dynamic repair model. Physica A 490, 323–330 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hu, F., et al.: Recovery of infrastructure networks after localised attacks. Sci. Rep. 6(1), 1–10 (2016)

    Google Scholar 

  4. Yu, H., Yang, C.: Partial network recovery to maximize traffic demand. IEEE Commun. Lett. 15(12), 1388–1390 (2011)

    Article  Google Scholar 

  5. Yodo, N., Wang, P.: Engineering resilience quantification and system design implications: a literature survey. J. Mech. Des. 138, 11 (2016)

    Article  Google Scholar 

  6. Majdandzic, A., et al.: Spontaneous recovery in dynamical networks. Nat. Phys. 10(1), 34–38 (2014)

    Article  Google Scholar 

  7. Afrin, T., Yodo, N.: A concise survey of advancements in recovery strategies for resilient complex networks. J. Complex Netw. 7(3), 393–420 (2019)

    Article  Google Scholar 

  8. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  9. Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98–101 (2008)

    Article  Google Scholar 

  10. Fu, C., et al.: Link weight prediction using supervised learning methods and its application to yelp layered network. IEEE Trans. Knowl. Data Eng. 30(8), 1507–1518 (2018)

    Article  Google Scholar 

  11. Lü, L., et al.: Toward link predictability of complex networks. Proc. Natl. Acad. Sci. 112(8), 2325–2330 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Physica A 390(6), 1150–1170 (2011)

    Article  Google Scholar 

  13. Samei, Z., Jalili, M.: Discovering spurious links in multiplex networks based on interlayer relevance. J. Complex Netw. 7(5), 641–658 (2019)

    Article  Google Scholar 

  14. Sales-Pardo, M., et al.: Extracting the hierarchical organization of complex systems. Proc. Natl. Acad. Sci. 104(39), 15224–15229 (2007)

    Article  Google Scholar 

  15. Airoldi, E.M., et al.: Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9, 1981–2014 (2008)

    MATH  Google Scholar 

  16. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Netw. 5(2), 109–137 (1983)

    Article  MathSciNet  Google Scholar 

  17. Heckerman, D., Meek, C., Koller, D.: Probabilistic entity-relationship models, PRMs, and plate models. In: Introduction to Statistical Relational Learning, pp. 201–238 (2007)

    Google Scholar 

  18. Neville, J.: Statistical models and analysis techniques for learning in relational data (2006)

    Google Scholar 

  19. Herrgård, M.J., et al.: A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat. Biotechnol. 26(10), 1155–1160 (2008)

    Article  Google Scholar 

  20. Linden, G., Smith, B., Com, J.Y.A.: Industry report: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Distrib. Syst. Onl. Citeseer (2003)

    Google Scholar 

  21. Radicchi, F., et al.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. 101(9), 2658–2663 (2004)

    Article  Google Scholar 

  22. Wang, K., Li, L., Pu, C.: Robustness of link prediction under network attacks (2018). https://arxiv.org/abs/1811.04528

  23. Krioukov, D., et al.: Hyperbolic geometry of complex networks. Phys. Rev. E 82(3), 036106 (2010)

    Article  MathSciNet  Google Scholar 

  24. Papadopoulos, F., et al.: Popularity versus similarity in growing networks. Nature 489(7417), 537–540 (2012)

    Article  Google Scholar 

  25. Papadopoulos, F., Psomas, C., Krioukov, D.: Network mapping by replaying hyperbolic growth. IEEE/ACM Trans. Netw. 23(1), 198–211 (2014)

    Article  Google Scholar 

  26. Alessandro, M., Vittorio, C.C.: Leveraging the nonuniform PSO network model as a benchmark for performance evaluation in community detection and link prediction. New J. Phys. 20(6), 063022 (2018)

    Article  Google Scholar 

  27. Muscoloni, A., Cannistraci, C.V.: A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate realistic complex networks with communities. New J. Phys. 20(5), 052002 (2018)

    Article  MathSciNet  Google Scholar 

  28. Samei, Z., Jalili, M.: Application of hyperbolic geometry in link prediction of multiplex networks. Sci. Rep. 9(1), 1–11 (2019)

    Article  Google Scholar 

  29. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Article  Google Scholar 

  30. Cohen, R., et al.: Breakdown of the internet under intentional attack. Phys. Rev. Lett. 86(16), 3682 (2001)

    Article  Google Scholar 

  31. Crucitti, P., et al.: Error and attack tolerance of complex networks. Physica A 340(1–3), 388–394 (2004)

    Article  MathSciNet  Google Scholar 

  32. Allesina, S., Pascual, M.: Googling food webs: can an eigenvector measure species’ importance for coextinctions? PLoS Comput. Biol. 5(9), e1000494 (2009)

    Article  MathSciNet  Google Scholar 

  33. Iyer, S., et al.: Attack robustness and centrality of complex networks. PLoS ONE 8(4), e59613 (2013)

    Article  Google Scholar 

  34. Mozafari, M., Khansari, M.: Improving the robustness of scale-free networks by maintaining community structure. J. Complex Netw. 7(6), 838–864 (2019)

    Article  MathSciNet  Google Scholar 

  35. Moshiri, M., Safaei, F., Samei, Z.: A novel recovery strategy based on link prediction and hyperbolic geometry of complex networks. J. Complex Netw. 9(4), cnab007 (2021)

    Article  MathSciNet  Google Scholar 

  36. Muscoloni, A., Abdelhamid, I., Cannistraci, C.V.: Local-community network automata modelling based on length-three-paths for prediction of complex network structures in protein interactomes, food webs and more. bioRxiv 346916 (2018)

    Google Scholar 

  37. Kleineberg, K.-K., et al.: Hidden geometric correlations in real multiplex networks. Nat. Phys. 12(11), 1076–1081 (2016)

    Article  Google Scholar 

  38. Clauset, A., Shalizi, C.R., Newman, M.E.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gopal, S.: The evolving social geography of blogs. In: Miller, H.J. (ed.) Societies and Cities in the Age of Instant Access, pp. 275–293. Springer, Dordrecht (2007). https://doi.org/10.1007/1-4020-5427-0_18

    Chapter  Google Scholar 

  40. Kunegis, J.: Konect: the koblenz network collection. In: Proceedings of the 22nd International Conference on World Wide Web (2013)

    Google Scholar 

  41. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 US election: divided they blog. In: Proceedings of the 3rd International Workshop on Link Discovery (2005)

    Google Scholar 

  42. https://networkrepository.com/web-polblogs.php

  43. Šubelj, L., Bajec, M.: Ubiquitousness of link-density and link-pattern communities in real-world networks. Eur. Phys. J. B 85(1), 1–11 (2012)

    Article  Google Scholar 

  44. https://pyvis.readthedocs.io/en/latest/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Safaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moshiri, M., Safaei, F. (2022). Retrieval of Redundant Hyperlinks After Attack Based on Hyperbolic Geometry of Web Complex Networks. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1072. Springer, Cham. https://doi.org/10.1007/978-3-030-93409-5_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93409-5_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93408-8

  • Online ISBN: 978-3-030-93409-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics