Skip to main content

Benchmarking Optimal Control for Network Dynamic Systems with Plausible Epidemic Models

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1073))

Included in the following conference series:

  • 3672 Accesses

Abstract

The sheer dimension of network dynamic systems adds a challenge of scale to synthesizing optimal control, which the techniques such as mean-field approximation, reinforcement learning, and graphon mean field games attempt to overcome. We propose to use compartmental metapopulation epidemic models derived from open data to benchmark these advanced approaches on an important problem with intuitive visualization options such as choropleth maps. To this end, we formalize a procedure for generating plausible instances of such models with 1–64,735 nodes based on open census data for the contiguous U.S., each with a network of daily commute and airplane travel, coupled with a formal aggregation routine enabling a view of the same geography at different resolutions, illustrated by merging the 2,072 census tracts in Oregon and Washington states, together with their travel networks, into 75 county-level nodes, 23 “airport service area” nodes, and 2 nodes for states themselves. These four cases, and ten other, are then put through 180-day “patient zero” scenarios in a Metapopulation SIR Model with per-node “lockdown level” control, with the objective of minimizing the cumulative number of infections and the lockdown level. The optimal control is derived through the Pontryagin Maximum Principle and numerically computed with the forward-backward sweep method. To ensure reproducibility, the instance generator, solver, and visualization routines are available at https://github.com/yvs314/epi-net-m.

This work was supported by AFOSR grant FA9550-19-1-0138 and ARL grant W911NF1910110.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achterberg, M.A., Prasse, B., Ma, L., Trajanovski, S., Kitsak, M., Van Mieghem, P.: Comparing the accuracy of several network-based COVID-19 prediction algorithms. Int. J. Forecast. (2020)

    Google Scholar 

  2. Ajelli, M., et al.: Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models. BMC Infect. Dis. 10, 190 (2010)

    Article  Google Scholar 

  3. Aurell, A., Carmona, R., Dayanıklı, G., Laurière, M.: Finite state graphon games with applications to epidemics. arXiv Preprint arXiv:2106.07859 (2021)

  4. Balcan, D., Gonçalves, B., Hu, H., Ramasco, J.J., Colizza, V., Vespignani, A.: Modeling the spatial spread of infectious diseases: The GLobal Epidemic and Mobility computational model. J. Comput. Sci. 1(3), 132–145 (2010)

    Article  Google Scholar 

  5. Brett, T., et al.: Detecting critical slowing down in high-dimensional epidemiological systems. PLoS Comput. Biol. 16(3), 1–19 (2020)

    Article  MathSciNet  Google Scholar 

  6. U.S. Bureau of Transportation Statistics. Air carrier statistics (Form 41 traffic)—U.S. carriers. T-100 domestic market (2020). https://www.transtats.bts.gov/. Accessed 28 Mar 2020

  7. Carli, R., Cavone, G., Epicoco, N., Scarabaggio, P., Dotoli, M.: Model predictive control to mitigate the COVID-19 outbreak in a multi-region scenario. Ann. Rev. Control 50, 373–393 (2020)

    Article  MathSciNet  Google Scholar 

  8. Chao, D.L., Halloran, M.E., Obenchain, V.J., Longini, I.M., Jr.: FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput. Biol. 6(1), 1–8 (2010)

    Article  MathSciNet  Google Scholar 

  9. Erol, S., Parise, F., Teytelboym, A.: Contagion in graphons. Available at SSRN (2020)

    Google Scholar 

  10. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, New York (1975). https://doi.org/10.1007/978-1-4612-6380-7

    Book  MATH  Google Scholar 

  11. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238–246 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, S., Caines, P.E.: Graphon control of large-scale networks of linear systems. IEEE Trans. Autom. Control 65(10), 4090–4105 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kirk, D.E.: Optimal Control Theory: An Introduction. Prentice-Hall, Englewood Cliffs (1970)

    Google Scholar 

  14. Kiss, I.Z., Miller, J.C., Simon, P.L., et al.: Mathematics of Epidemics on Networks, vol. 598. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50806-1

    Book  MATH  Google Scholar 

  15. Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Models. CRC Press, Boca Raton (2007)

    Book  MATH  Google Scholar 

  16. Liu, F., Buss, M.: Optimal control for heterogeneous node-based information epidemics over social networks. IEEE Trans. Control Netw. Syst. 7(3), 1115–1126 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lovász, L.: Large Networks and Graph Limits, vol. 60. American Mathematical Society, Providence (2012)

    MATH  Google Scholar 

  18. Ma, Q., Liu, Y.Y., Olshevsky, A.: Optimal lockdown for pandemic control (2021)

    Google Scholar 

  19. Mei, W., Mohagheghi, S., Zampieri, S., Bullo, F.: On the dynamics of deterministic epidemic propagation over networks. Ann. Rev. Control 44, 116–128 (2017)

    Article  Google Scholar 

  20. Nowzari, C., Preciado, V.M., Pappas, G.J.: Analysis and control of epidemics: a survey of spreading processes on complex networks. IEEE Control Syst. Mag. 36(1), 26–46 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Openflights airport database (2017). https://openflights.org/data.html, https://github.com/jpatokal/openflights/data. Accessed 21 Mar 2021

  22. Ouardighi, F.E., Khmelnitsky, E., Sethi, S.: Control of an epidemic with endogenous treatment capability under popular discontent and social fatigue. Available at SSRN 3731673 (2020)

    Google Scholar 

  23. Paré, P.E., Beck, C.L., Başar, T.: Modeling, estimation, and analysis of epidemics over networks: an overview. Ann. Rev. Control 50, 345–360 (2020)

    Article  MathSciNet  Google Scholar 

  24. Rvachev, L.A., Longini, I.M., Jr.: A mathematical model for the global spread of influenza. Math. Biosci. 75(1), 3–22 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Satyanarayan, A., Moritz, D., Wongsuphasawat, K., Heer, J.: Vega-lite: a grammar of interactive graphics. IEEE Trans. Vis. Comput. Graph. 23(1), 341–350 (2016)

    Article  Google Scholar 

  26. Shampine, L.F., Reichelt, M.W.: The Matlab ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vrabac, D., Shang, M., Butler, B., Pham, J., Stern, R., Paré, P.E.: Capturing the effects of transportation on the spread of COVID-19 with a multi-networked SEIR model. IEEE Control Syst. Lett. 6, 103–108 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Peter E. Caines, Rinel Foguen Tchuendom, and Shuang Gao for discussions on the model, data, and control. The author is especially grateful to Kara Ignatenko for help in improving the project code maintainability and the performance of the instance generator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslav V. Salii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salii, Y.V. (2022). Benchmarking Optimal Control for Network Dynamic Systems with Plausible Epidemic Models. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-93413-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93413-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93412-5

  • Online ISBN: 978-3-030-93413-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics