Skip to main content

Hardness Results for Seeding Complex Contagion with Neighborhoods

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1073))

Included in the following conference series:

Abstract

Identifying the minimum set of initiators in fixed threshold complex contagions to bring about behavioral change in a network is a well-known problem that has been studied under different names such as influence maximization or Target Set Selection (TSS). It is known to be hard to approximate within a polylogarithmic factor.

Recently, Guilbeault and Centola (Nature Communications, 2021) employed a novel seeding strategy in which seed nodes are included together with all of their neighbors. Referring to this variant as Neighborhood-TSS (N-TSS), we provide hardness and inapproximability results for identifying minimum-cardinality seed sets. In addition, we close a gap in the literature by extending a Strong Exponential Time Hypothesis (SETH)-based lower bound on the running time for the cardinality-k TSS with uniform threshold k to the case \(k=2\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedkin, N.E., Johnsen, E.C.: Social Influence Network Theory: A Sociological Examination of Small Group Dynamics. Structural Analysis in the Social Sciences, Cambridge University Press (2011)

    Google Scholar 

  2. Centola, D.: How Behavior Spreads: The Science of Complex Contagions, vol. 3. Princeton University Press (2018)

    Google Scholar 

  3. Couzin, I.D.: Collective animal migration. Curr. Biol. 28(17), R976–R980 (2018)

    Article  Google Scholar 

  4. Dreyer, P.A., Jr., Roberts, F.S.: Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion. Discret. Appl. Math. 157(7), 1615–1627 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

    Google Scholar 

  6. Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social networks. In: International Colloquium on Automata, Languages, and Programming, pp. 1127–1138 (2005)

    Google Scholar 

  7. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. Theory Comput. 11(4), 105–147 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Valente, T.W.: Social network thresholds in the diffusion of innovations. Social Networks 18(1), 69–89 (1996)

    Article  Google Scholar 

  9. Chen, N.: On the approximability of influence in social networks. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1029–1037 (2008)

    Google Scholar 

  10. Banerjee, S., Jenamani, M., Pratihar, D.K.: A survey on influence maximization in a social network. Knowl. Inf. Syst. 62(9), 3417–3455 (2020)

    Article  Google Scholar 

  11. Centola, D.: Influential networks. Nat. Hum. Behav. 3(7), 664–665 (2019)

    Article  Google Scholar 

  12. Barberá, P., Wang, N., Bonneau, R., Jost, J.T., Nagler, J., Tucker, J., González-Bailón, S.: The critical periphery in the growth of social protests. PLoS ONE 10(11), e0143611 (2015)

    Article  Google Scholar 

  13. Guilbeault, D., Centola, D.: Topological measures for identifying and predicting the spread of complex contagions. Nat. Commun. 12, 1–9 (2021)

    Article  Google Scholar 

  14. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of target set selection. Soc. Netw. Anal. Min. 3(2), 233–256 (2013)

    Article  MATH  Google Scholar 

  16. Reichman, D.: New bounds for contagious sets. Discret. Math. 312(10), 1812–1814 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make target set selection tractable. Theory Comput. Syst. 55(1), 61–83 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mishra, S., Radhakrishnan, J., Sivasubramanian, S.: On the hardness of approximating minimum monopoly problems. In: International Conference on Foundations of Software Technology and Theoretical Computer Science, pp. 277–288 (2002)

    Google Scholar 

  19. Klasing, R., Laforest, C.: Hardness results and approximation algorithms of k-tuple domination in graphs. Inf. Process. Lett. 89(2), 75–83 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theoret. Comput. Sci. 282(2), 231–257 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Charikar, M., Naamad, Y., Wirth, A.: On approximating target set selection. Randomization, and Combinatorial Optimization. Algorithms and Techniques, Approximation (2016)

    MATH  Google Scholar 

  22. Pătraşcu, M., Williams, R.: On the possibility of faster sat algorithms. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1065–1075 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meher Chaitanya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaitanya, M., Brandes, U. (2022). Hardness Results for Seeding Complex Contagion with Neighborhoods. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-93413-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93413-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93412-5

  • Online ISBN: 978-3-030-93413-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics