Skip to main content

Influence Maximization in Complex Networks Through Supervised Machine Learning

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1073))

Included in the following conference series:

Abstract

Identifying influential nodes in complex networks is a well studied problem in network science. Finding an optimal set of influential nodes is an NP-Hard problem and thus requires the use of heuristics to find the minimal set of nodes capable of maximizing influence in a network. Once identified, these influencer nodes can been applied in various applications such as controlling disease outbreaks, identifying infectious nodes in computer networks, and finding super spreaders for viral marketing in social networks. This paper proposes a novel approach to solve this problem by modeling it as a supervised machine learning problem. Several synthetic and real world networks with nodal and network level attributes are used to train supervised learning models. Model performance is tested against real world networks emanating from a variety of different domains. Results show that the trained models are highly accurate in identifying influential nodes in networks previously not used for training and outperform commonly used techniques in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/seekme94/influence-mining/tree/influential-node-prediction/Experiments.

  2. 2.

    States that a change in one quantity X results in a proportional relative change in another quantity Y.

References

  1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 u.s. election: divided they blog. In: LinkKDD ’05 Proceedings, pp. 36–43. ACM Press (2005)

    Google Scholar 

  2. Bae, J., Kim, S.: Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Physica A: Stat. Mechanics 395, 549–559 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of Scaling in Random Networks. Science, pp. 1–11 (1999)

    Google Scholar 

  4. Batagelj, V., Zaversnik, M.: An O(m) Algorithm for Cores Decomposition of Networks. arXiv 1(49), 1–10 (2003)

    Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  6. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press (1984)

    Google Scholar 

  7. Chang, C.C., Lin, C.J., Chang, C.-C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM (TIST) 2(3), 27 (2011)

    Google Scholar 

  8. Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference, pp. 785–794 (2016)

    Google Scholar 

  9. Chen, W., Collins, A.: Influence maximization in social networks when negative opinions may emerge and propagate. In: SDM 2011 (2011)

    Google Scholar 

  10. Chen, Y., Paul, G., Havlin, S., Liljeros, F., Stanley, H.E.: Finding a better immunization strategy. Phys. Rev. Lett. 101(5), 058701 (2008)

    Article  Google Scholar 

  11. Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S.: Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85(21), 4626 (2000)

    Article  Google Scholar 

  12. Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695 (2006). http://igraph.sf.net

  13. Dobson, A.J.: An intro. to generalized linear models. CRC Press (2018)

    Google Scholar 

  14. Domingos, P., Richardson, M.: Mining the Network Value of Customers. In: Proceedings of the Seventh ACM SIGKDD International Conference, pp. 57–66 (2001)

    Google Scholar 

  15. Fernández-Delgado, M.: Do we need hundreds of classifiers to solve real world classification problems? J. ML Res. 15(1), 3133–3181 (2014)

    Google Scholar 

  16. Goyal, A., Bonchi, F., Lakshmanan, L.: Learning influence probabilities in social networks. In: 3rd ACM Conference - WSDM 2010, p. 241. ACM Press (2010)

    Google Scholar 

  17. Guille, A., Hacid, H., Favre, C.: Predicting the temporal dynamics of information diffusion in social networks. In: Proceedings of the 21st International Conference on WWW (2013)

    Google Scholar 

  18. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65(5), 056109 (2002)

    Google Scholar 

  19. Hussain, O., Zaidi, F., Rozenblat, C.: Analyzing diversity, strength and centrality of cities using networks of multinational firms. Netw. Spat. Econ. 19(3), 791–817 (2019)

    Article  MATH  Google Scholar 

  20. Hussain, O.A., Zaidi, F.: Empirical analysis of seed selection criterion for different classes of networks. In: IEEE - SCA 2013, pp. 348–353 (2013)

    Google Scholar 

  21. Jeong, H., Mason, S.P., Barabási, A.L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)

    Article  Google Scholar 

  22. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: 9th ACM SIGKDD International Conference, p. 137. ACM Press (2003)

    Google Scholar 

  23. Landherr, A., Friedl, B., Heidemann, J.: A critical review of centrality measures in social networks. Bus. Inf. Syst. Eng. 2(6), 371–385 (2010)

    Article  Google Scholar 

  24. Leskovec, J., Krause, A., Guestrin, C.: Cost-effective outbreak detection in networks. In: 13th ACM SIGKDD International Conference, pp. 420–429. ACM Press (2007)

    Google Scholar 

  25. Lü, L., Chen, D., Ren, X.L., Zhang, Q.M., Zhang, Y.C., Zhou, T.: Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016)

    Article  MathSciNet  Google Scholar 

  26. Mornati, F.: Manuale di economia politica, vol. 40. Studio Tesi (1971)

    Google Scholar 

  27. Morone, F., Makse, H.a.: Influence maximization in complex networks through optimal percolation: supplementary information. Current Sci. 93(1), 17–19 (2015)

    Google Scholar 

  28. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Tech. rep, Stanford InfoLab (1999)

    Google Scholar 

  29. Saito, K., Nakano, R., Kimura, M.: Prediction of information diffusion probabilities for independent cascade model. Lecture Notes in CS 519, 67–75 (2008)

    Google Scholar 

  30. Smith, D.A., White, D.R.: Structure and dynamics of the global economy: network analysis of international trade 1965–1980. Soc. Forces 70(4), 857–893 (1992)

    Article  Google Scholar 

  31. Watts, D.J., Strogatz, S.H.: Collective dynamics of a small-world’ networks. Nature 393(June), 440–442 (1998)

    Article  MATH  Google Scholar 

  32. White, J.G., et al. E.S.: The structure of the nervous system of the nematode c. elegans. Phil. Trans. R. Soc. London, B: Bio. Sci. 314, 1–340 (1986)

    Google Scholar 

  33. Zanin, M., Papo, D.: Combining complex networks and data mining: Why and how. Phys. Rep. 635, 1–44 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hussain, O.A., Zaidi, F. (2022). Influence Maximization in Complex Networks Through Supervised Machine Learning. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-93413-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93413-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93412-5

  • Online ISBN: 978-3-030-93413-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics