Skip to main content

Epidemics in a Synthetic Urban Population with Multiple Levels of Mixing

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Abstract

Network–based epidemic models that account for heterogeneous contact patterns are extensively used to predict and control the diffusion of infectious diseases. We use census and survey data to reconstruct a geo–referenced and age–stratified synthetic urban population connected by stable social relations. We consider two kinds of interactions, distinguishing daily (household) contacts from other frequent contacts. Moreover, we allow any couple of individuals to have rare fortuitous interactions. We simulate the epidemic diffusion on a synthetic urban network for a typical medium-sized Italian city and characterize the outbreak speed, pervasiveness, and predictability in terms of the socio–demographic and geographic features of the host population. Introducing age–structured contact patterns results in faster and more pervasive outbreaks, while assuming that the interaction frequency decays with distance has only negligible effects. Preliminary evidence shows the existence of patterns of hierarchical spatial diffusion in urban areas, with two regimes for epidemic spread in low- and high-density regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    [23] has no similar condition, but our noise is equivalent to theirs in the limit \(N\rightarrow \infty \).

  2. 2.

    These tests, omitted here due to space limitations, may be made available on request.

References

  1. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics-I. Bull. Math. Biol. 53(1–2), 33–55 (1991)

    Google Scholar 

  2. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mossong, J., et al.: Social contacts and mixing patterns relevant to the spread of infectious diseases. PLOS Med. 5(3), 1–1 (2008)

    Article  Google Scholar 

  4. Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J.-F., Vespignani, A.: Dynamics of person-to-person interactions from distributed RFID sensor networks. PloS one 5(7), e11596 (2010)

    Article  Google Scholar 

  5. Mistry, D., et al.: Inferring high-resolution human mixing patterns for disease modeling (2020). arXiv preprint arXiv:2003.01214

  6. Eubank, S., et al.: Modelling disease outbreaks in realistic urban social networks. Nature 429(6988), 180–184 (2004)

    Article  Google Scholar 

  7. Merler, S., Ajelli, M.: The role of population heterogeneity and human mobility in the spread of pandemic influenza. Proc. Royal Soc. B Biol. Sci. 277(1681), 557–565 (2009)

    Article  Google Scholar 

  8. Chang, S., et al.: Mobility network models of covid-19 explain inequities and inform reopening. Nature 589(7840), 82–87 (2021)

    Article  Google Scholar 

  9. Hufnagel, L., Brockmann, D., Geisel, T.: Forecast and control of epidemics in a globalized world. Proc. Natl. Acad. Sci. 101(42), 15124–15129 (2004)

    Article  Google Scholar 

  10. Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Natl. Acad. Sci. 103(7), 2015–2020 (2006)

    Article  MATH  Google Scholar 

  11. Tizzoni, M., et al.: On the use of human mobility proxies for modeling epidemics. PLoS Comput. Biol. 10(7), e1003716 (2014)

    Article  Google Scholar 

  12. Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study. BMC Med. 5(1), 1–13 (2007)

    Article  Google Scholar 

  13. Cazelles, B., Champagne, C., Dureau, J.: Accounting for non-stationarity in epidemiology by embedding time-varying parameters in stochastic models. PLoS Comput. Biol. 14(8), e1006211 (2018)

    Article  Google Scholar 

  14. Gupta, S., Anderson, R.M., May, R.M.: Networks of sexual contacts: implications for the pattern of spread of HIV. AIDS (London, England) 3(12), 807–817 (1989)

    Article  Google Scholar 

  15. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66(1), 016128 (2002)

    Article  MathSciNet  Google Scholar 

  16. Keeling, M.J., Eames, K.T.D.: Networks and epidemic models. J. Royal Soc. Interf. 2(4), 295–307 (2005)

    Article  Google Scholar 

  17. Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. (TISSEC) 10(4), 1–26 (2008)

    Article  Google Scholar 

  18. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)

    Article  MathSciNet  Google Scholar 

  19. Charu, V., et al.: Human mobility and the spatial transmission of influenza in the united states. PLoS Comput. Biol. 13(2), e1005382 (2017)

    Article  MathSciNet  Google Scholar 

  20. Grenfell, B.T., Bjørnstad, O.N., Kappey, J.: Travelling waves and spatial hierarchies in measles epidemics. Nature 414(6865), 716–723 (2001)

    Article  Google Scholar 

  21. Li, R., Richmond, P., Roehner, B.M.: Effect of population density on epidemics. Physica A Stat. Mech. Appl. 510, 713–724 (2018)

    Article  Google Scholar 

  22. Ball, F., Neal, P.: A general model for stochastic sir epidemics with two levels of mixing. Math. Biosci. 180(1–2), 73–102 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ball, F., Neal, P.: Network epidemic models with two levels of mixing. Math. Biosci. 212(1), 69–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kiss, I.Z., Green, D.M., Kao, R.R.: The effect of contact heterogeneity and multiple routes of transmission on final epidemic size. Math. Biosci. 203(1), 124–136 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bondarenko, M., Kerr, D., Sorichetta, A., Tatem, A.: Census/projection-disaggregated gridded population datasets for 189 countries in 2020 using built-settlement growth model (bsgm) outputs (2020)

    Google Scholar 

  26. Guarino, S., et al.: Inferring urban social networks from publicly available data. Fut. Internet 13(5), 108 (2021)

    Article  Google Scholar 

  27. Willem, L., Van Hoang, T., Funk, S., Coletti, P., Beutels, P., Hens, N.: SOCRATES: an online tool leveraging a social contact data sharing initiative to assess mitigation strategies for COVID-19. BMC Res. Notes 13(1), 1–8 (2020)

    Article  Google Scholar 

  28. Caldarelli, G., Capocci, A., De Los Rios, P., Muñoz, M.A.: Scale-free networks from varying vertex intrinsic fitness. Phys. Rev. Lett. 89, 258708 (2002)

    Article  Google Scholar 

  29. Guarino, S., et al.: A model for urban social networks. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12744, pp. 281–294. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77967-2_23

    Chapter  Google Scholar 

  30. Biggerstaff, M., Cauchemez, S., Reed, C., Gambhir, M., Finelli, L.: Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: a systematic review of the literature. BMC Infect. Dis. 14(1), 1–20 (2014)

    Article  Google Scholar 

  31. Liu, Q.-H., Ajelli, M., Aleta, A., Merler, S., Moreno, Y., Vespignani, A.: Measurability of the epidemic reproduction number in data-driven contact networks. Proc. Natl. Acad. Sci. 115(50), 12680–12685 (2018)

    Article  Google Scholar 

  32. Shu, P., Wang, W., Tang, M., Do, Y.: Numerical identification of epidemic thresholds for susceptible-infected-recovered model on finite-size networks. Chaos Interdisc. J. Nonlinear Sci. 25(6), 063104 (2015)

    Article  MathSciNet  Google Scholar 

  33. Medo, M.: Contact network models matching the dynamics of the covid-19 spreading. J. Phys. A Math. Theor. 54(3), 035601 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Viboud, C., Bjørnstad, O.N., Smith, D.L., Simonsen, L., Miller, M.A., Grenfell, B.T.: Synchrony, waves, and spatial hierarchies in the spread of influenza. Science 312(5772), 447–451 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Celestini, A., Colaiori, F., Guarino, S., Mastrostefano, E., Zastrow, L.R. (2022). Epidemics in a Synthetic Urban Population with Multiple Levels of Mixing. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-93413-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93413-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93412-5

  • Online ISBN: 978-3-030-93413-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics