Skip to main content

Relations Between Entropy and Accuracy Trends in Complex Artificial Neural Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Abstract

Training Artificial Neural Networks (ANNs) is a non-trivial task. In the last years, there has been a growing interest in the academic community in understanding how those structures work and what strategies can be adopted to improve the efficiency of the trained models. Thus, the novel approach proposed in this paper is the inclusion of the entropy metric to analyse the training process. Herein, indeed, an investigation on the accuracy computation process in relation to the entropy of the intra-layers’ weights of multilayer perceptron (MLP) networks is proposed. From the analysis conducted on two well-known datasets with several configurations of the ANNs, we discovered that there is a connection between those two metrics (i.e., accuracy and entropy). These promising results can be helpful in defining, in the future, new criteria to evaluate the training process goodness in real-time by optimising it and allow faster detection of its trend.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://featureselection.asu.edu/.

  2. 2.

    https://sites.google.com/site/feipingnie/file/https://jundongl.github.io/scikit-feature/datasets.html.

  3. 3.

    http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.

References

  1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  2. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., Alsaadi, F.E.: A survey of deep neural network architectures and their applications. Neurocomputing 234, 11–26 (2017)

    Article  Google Scholar 

  3. Jumper, J., et al.: Highly accurate protein structure prediction with AlphaFold. Nature 96(7873), 583–589 (2021)

    Article  Google Scholar 

  4. Grassia, M., De Domenico, M., Mangioni, G.: Machine learning dismantling and early-warning signals of disintegration in complex systems. Nature Commun. 12, 5190 (2021)

    Article  Google Scholar 

  5. Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.-H., Patton, R.M.: Optimizing deep learning hyper-parameters through an evolutionary algorithm. In: Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, pp. 1–5 (2015)

    Google Scholar 

  6. Assunção, F., Lourenço, N., Machado, P., Ribeiro, B.: Evolving the topology of large scale deep neural networks. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 19–34. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_2

    Chapter  Google Scholar 

  7. Mattioli, F., Caetano, D., Cardoso, A., Naves, E., Lamounier, E.: An experiment on the use of genetic algorithms for topology selection in deep learning. J. Electr. Comput. Eng. 2019, 1–12 (2019)

    Google Scholar 

  8. Mocanu, D.C., Mocanu, E., Stone, P., Nguyen, P.H., Gibescu, M., Liotta, A.: Scalable training of artificial neural networks with adaptive sparse connectivity inspired by network science. Nature Commun. 9(1), 1–12 (2018)

    Article  Google Scholar 

  9. Cavallaro, L., Bagdasar, O., De Meo, P., Fiumara, G., Liotta, A.: Artificial neural networks training acceleration through network science strategies. Soft Comput. 24(23), 17787–17795 (2020)

    Article  MATH  Google Scholar 

  10. Liu, S., Ni’mah, I., Menkovski, V., Mocanu, D.C., Pechenizkiy, M.: Efficient and effective training of sparse recurrent neural networks. Neural Comput. Appl. 33, 1–12 (2021)

    Google Scholar 

  11. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  12. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: Going beyond Euclidean data. IEEE Signal Process. Mag. 34, 18–42 (2017)

    Article  Google Scholar 

  13. Gómez-Gardeñes, J., Latora, V.: Entropy rate of diffusion processes on complex networks. Phys. Rev. E 78, 065102 (2008)

    Article  Google Scholar 

  14. Bianconi, G., Coolen, A.C.C., Perez Vicente, C.J.: Entropies of complex networks with hierarchically constrained topologies. Phys. Rev. E 78, 016114 (2008)

    Google Scholar 

  15. Bianconi, G.: Entropy of network ensembles. Phys. Rev. E 79, 036114 (2009)

    Google Scholar 

  16. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cover, T., Thomas, J.: Elements of Information Theory, pp 33–36. Wiley, New York (1991)

    Google Scholar 

  18. Goodfellow, I.J., Bengio, Y., Courville, A., Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

  19. Gori, M.: Chapter 5 - deep architectures. In: Gori, M., (ed.) Machine Learning, pp. 236–338. Morgan Kaufmann (2018)

    Google Scholar 

  20. Li, Y., Cai, W., Li, Y., Du, X.: Key node ranking in complex networks: a novel entropy and mutual information-based approach. Entropy 22(1), 52 (2020)

    Article  MathSciNet  Google Scholar 

  21. Alves, L.G.A., Mangioni, G., Rodrigues, F.A., Panzarasa, P., Moreno, Y.: Unfolding the complexity of the global value chain: strength and entropy in the single-layer, multiplex, and multi-layer international trade networks. Entropy 20(12), 909 (2018)

    Google Scholar 

  22. Omar, Y.M., Plapper, P.: A survey of information entropy metrics for complex networks. Entropy 22(12), 1417 (2020)

    Google Scholar 

  23. Bhattacharjee, A., et al.: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. 98(24), 13790–13795 (2001)

    Article  Google Scholar 

  24. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1548–1560 (2010)

    Google Scholar 

  25. Cai, D., He, X., Han, J.: Speed up kernel discriminant analysis. VLDB J. 20(1), 21–33 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Cavallaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cavallaro, L. et al. (2022). Relations Between Entropy and Accuracy Trends in Complex Artificial Neural Networks. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-93413-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93413-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93412-5

  • Online ISBN: 978-3-030-93413-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics