Skip to main content

Emergence of Stable Functional Cliques in Developing Neural Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1073))

Included in the following conference series:

  • 3586 Accesses

Abstract

Complex networks constructed from neural correlations exhibit nonrandom structures hypothesized to be related to neural information processing. These networks can be characterized by topological features such as hubs, communities and small world connectivity. A particular network structure of interest is a clique - a fully connected subgraph - which may indicate the existence of underlying neural ensembles. We introduce a multilayer network method to observe the persistence of functional cliques over population bursts as well as their development as the underlying neural network forms connections. Using data from developing cultures on MEAs, we show that cliques become more numerous and persistent over population bursts as neural cultures age. These results provide evidence for the formation of neural ensembles in cultured neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akin, M., Onderdonk, A., Dzakpasu, R., Guo, Y.: Functional reconstruction of dyadic and triadic subgraphs in spiking neural networks. In: Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A. (eds.) COMPLEX NETWORKS 2016. SCI, vol. 693, pp. 697–708. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50901-3_55

    Chapter  Google Scholar 

  2. Akin, M., Onderdonk, A., Guo, Y.: Effects of local network topology on the functional reconstruction of spiking neural network models. Appl. Netw. Sci. 2(1), 1–22 (2017). https://doi.org/10.1007/s41109-017-0044-1

    Article  Google Scholar 

  3. Boccaletti, S., et al.: The structure and dynamics of multilayer networks. Phys. Rep. 544, 1–122 (2014)

    Article  MathSciNet  Google Scholar 

  4. Brunel, N.: Is cortical connectivity optimized for storing information? Nat. Neurosci. 19(5), 749–755 (2016)

    Article  Google Scholar 

  5. Downes, J.H., et al.: Emergence of a small-world functional network in cultured neurons. PLoS Comput. Biol. 8, e1002522 (2012)

    Article  Google Scholar 

  6. Frolov, N.S., Maksimenko, V.A., Khramova, M.V., Pisarchik, A.N., Hramov, A.E.: Dynamics of functional connectivity in multilayer cortical brain network during sensory information processing. Eur. Phys. J. Spec. Top. 228(11), 2381–2389 (2019). https://doi.org/10.1140/epjst/e2019-900077-7

    Article  Google Scholar 

  7. Ito, S., Hansen, M.E., Heiland, R., Lumsdaine, A., Litke, A.M., Beggs, J.M.: Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PLoS ONE 6, e27431 (2011)

    Article  Google Scholar 

  8. Ito, S., et al.: Large-scale, high-resolution multielectrode-array recording depicts functional network differences of cortical and hippocampal cultures. PLoS ONE 9(8), e105324 (2014)

    Article  Google Scholar 

  9. Izhikevich, E.M.: Dynamical Systems in Neuroscience. MIT Press, Cambridge (2007)

    Google Scholar 

  10. Kobayashi, R., Kitano, K.: Impact of network topology on inference of synaptic connectivity from multi-neuronal spike data simulated by a large-scale cortical network mode. J. Comput. Neurosci. 35, 109–124 (2013). https://doi.org/10.1007/s10827-013-0443-y

    Article  MathSciNet  Google Scholar 

  11. Massobrio, P., Pasquale, V., Martinoia, S.: Self-organized criticality in cortical assemblies occurs in concurrent scale-free and small-world networks. Sci. Rep. 5, 10578 (2015)

    Article  Google Scholar 

  12. Niedringhaus, M., Chen, X., Conant, K., Dzakpasu, R.: Synaptic potentiation facilitates memory-like attractor dynamics in cultured in vitro hippocampal networks. PLoS ONE 8(3), e57144 (2013)

    Article  Google Scholar 

  13. Pasquale, V., Massobrio, P., Bologna, L.L., Chiappalone, M., Martinoia, S.: Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience 153(4), 1354–1369 (2008)

    Article  Google Scholar 

  14. Poli, D., Pastore, V.P., Massobrio, P.: Functional connectivity in in vitro neuronal assemblies. Front. Neural Circ. 9, 57 (2015)

    Google Scholar 

  15. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2011)

    Article  Google Scholar 

  16. Schroeter, M.S., Charlesworth, P., Kitzbichler, M.G., Paulsen, O., Bullmore, E.T.: Emergence of rich-club topology and coordinated dynamics in development of hippocampal functional networks in vitro. J. Neurosci. 35(14), 5459–5470 (2015)

    Article  Google Scholar 

  17. Segev, R., Baruchi, I., Hulata, E., Ben-Jacob, E.: Hidden neuronal correlations in cultured networks

    Google Scholar 

  18. Shimono, M., Beggs, J.M.: Functional clusters, hubs, and communities in the cortical microconnectome. Cereb. Cortex 25, 3743–3757 (2015)

    Article  Google Scholar 

  19. Sporns, O.: Networks of the Brain. MIT Press, Cambridge (2010). Phys. Rev. Lett. 92, 118102 (2004)

    Google Scholar 

  20. Timme, N.M., et al.: High-degree neurons feed cortical computations. PLoS Comput. Biol. 12, e1004858 (2016)

    Article  Google Scholar 

  21. Vaiana, M., Muldoon, S.F.: Multilayer brain networks. J. Nonlinear Sci. 30(5), 2147–2169 (2018). https://doi.org/10.1007/s00332-017-9436-8

    Article  MathSciNet  MATH  Google Scholar 

  22. Wagenaar, D., DeMarse, T.B., Potter, S.M.: MeaBench: a toolset for multi-electrode data acquisition and on-line analysis. In: 2005 2nd International IEEE EMBS Conference on Neural Engineering, Conference Proceedings, pp. 518–521 (2005)

    Google Scholar 

  23. Yuste, R.: From the neuron doctrine to neural networks. Nat. Rev. Neurosci. 16(8), 487–497 (2015)

    Article  Google Scholar 

  24. Zeldenrust, F., Wadman, W.J., Englitz, B.: Neural coding with bursts-current state and future perspectives. Front. Comput. Neurosci. 6(12), 48 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akin, M., Guo, Y. (2022). Emergence of Stable Functional Cliques in Developing Neural Networks. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-93413-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93413-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93412-5

  • Online ISBN: 978-3-030-93413-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics