Skip to main content

Understanding Imbalance Mechanisms in Shared Mobility Systems

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1073))

Included in the following conference series:

  • 3556 Accesses

Abstract

We explore numerically and analytically how a fleet of vehicles moving through a stations network becomes unbalanced. Framing the system in terms of a mathematical simplex subjected to stochastic flows allows us to understand system’s failure rigorously. This allows to find the effect of self-journeys in system’s stability. With a birth-death process approach we find analytical upper bounds for random walk and we monitor how the system collapses by super-diffusing under different randomisation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that permutations among the s components produce the same energy.

  2. 2.

    Also in the non-random case but in a much more complicated way.

  3. 3.

    If the first state is not exactly the barycentre, there is only one correction as an additive constant.

References

  1. Atmanspacher, H.: On macrostates in complex multi-scale systems. Entropy 18(12), 426 (2016)

    Google Scholar 

  2. Barbosa, H., et al.: Human mobility: models and applications. Phys. Rep. 734, 1–74 (2018). https://doi.org/10.1016/j.physrep.2018.01.001

  3. Borgnat, P., Abry, P., Flandrin, P., Robardet, C., Rouquier, J.B., Fleury, E.: Shared bicycles in a city: a signal processing and data analysis perspective. Adv. Complex Syst. 14(03), 415–438 (2011). https://doi.org/10.1142/S0219525911002950

  4. Chiariotti, F., Pielli, C., Zanella, A., Zorzi, M.: A dynamic approach to rebalancing bike-sharing systems. Sensors (Switzerland) 18(2), 1–22 (2018)

    Article  Google Scholar 

  5. Çolak, S., Lima, A., González, M.C.: Understanding congested travel in urban areas. Nat. Commun. 7, 10793 (2016)

    Google Scholar 

  6. Crisostomi, E., Faizrahnemoon, M., Schlote, A., Shorten, R.: A Markov-chain based model for a bike-sharing system. In: Proceedings 2015 International Conference on Connected Vehicles and Expo, ICCVE 2015, pp. 367–372 (2015)

    Google Scholar 

  7. Fricker, C., et al.: Mean field analysis for inhomogeneous bike sharing systems. to cite this version : Mean Feld Analysis for Inhomogeneous Bike Sharing Systems, AofA, July 2012, Montreal, Canada, pp. 0–12 (2014)

    Google Scholar 

  8. Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)

    Article  Google Scholar 

  9. Hamon, R., Borgnat, P., Flandrin, P., Robardet, C.: Networks as signals, with an application to a bike sharing system. In: 2013 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2013 - Proceedings, pp. 611–614 (2013)

    Google Scholar 

  10. Hu, G.Y., O’Connell, R.F.: Analytical inversion of symmetric tridiagonal matrices. J. Phys. A Math. Gen. 29(7), 1511–1513 (1996)

    Google Scholar 

  11. Labadi, K., Benarbia, T., Barbot, J.P., Hamaci, S., Omari, A.: Stochastic petri net modeling, simulation and analysis of public bicycle sharing systems. Auto. Sci. Eng. IEEE Trans. 12(99), 1–16 (2014). http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6869036

  12. Noulas, A., Scellato, S., Lambiotte, R., Pontil, M., Mascolo, C.: A tale of many cities: universal patterns in human urban mobility. PLoS ONE 7(5), e37027 (2012). https://doi.org/10.1371/journal.pone.0037027

  13. Preisler, T., Dethlefs, T., Renz, W.: Self-organizing redistribution of bicycles in a bike-sharing system based on decentralized control. In: 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), vol. 8, pp. 1471–1480 (2016). https://fedcsis.org/proceedings/2016/drp/126.html

  14. Purnama, I.B.I., Bergmann, N., Jurdak, R., Zhao, K.: Characterising and predicting urban mobility dynamics by mining bike sharing system data. In: Proceedings - 2015 IEEE 12th International Conference on Ubiquitous Intelligence and Computing, 2015 IEEE 12th International Conference on Advanced and Trusted Computing, 2015 IEEE 15th International Conference on Scalable Computing and Communications, vol. 20, pp. 159–167 (2015)

    Google Scholar 

  15. Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S., Ratti, C.: Quantifying the benefits of vehicle pooling with shareability networks. Proc. Natl. Acad. Sci. USA 111(37), 13290–13294 (2013). http://arxiv.org/abs/1310.2963%0Adx.doi.org/10.1073/pnas.1403657111

  16. Tachet, R., Sagarra, O., Santi, P., Resta, G., Szell, M., Strogatz, S.H., Ratti, C.: Scaling law of urban ride sharing. Sci. Rep. 7, 1–6 (2017). http://dx.doi.org/10.1038/srep42868

  17. Vazifeh, M.M.: Addressing the minimum fleet problem in on-demand urban mobility. Nature 557, 534–538 (2018)

    Google Scholar 

  18. Zaltz Austwick, M., O’Brien, O., Strano, E., Viana, M.: The structure of spatial networks and communities in bicycle sharing systems. PLoS ONE 8(9) (2013). http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0074685&type=printable

Download references

Acknowledgment

The authors acknowledge support from Project No. PGC2018-093854-B-I00 of the Spanish Ministerio de Ciencia Innovación y Universidades of Spain.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prieto-Castrillo, F., Benito, R.M., Borondo, J. (2022). Understanding Imbalance Mechanisms in Shared Mobility Systems. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-93413-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93413-2_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93412-5

  • Online ISBN: 978-3-030-93413-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics