Skip to main content

Layered Hodge Decomposition for Urban Transit Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications X (COMPLEX NETWORKS 2021)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1073))

Included in the following conference series:

  • 3613 Accesses

Abstract

Modeling the amount of passenger flow along any given line segment of an urban transit network is a challenging task due to the complexity of the system. In this paper, we embark on a characterization of these flows on the basis of a combination of (1) a layered decomposition of the origin-destination matrix, and (2) the Hodge decomposition, a discrete algebraic topology technique that partitions flows into gradient, solenoidal, and harmonic components. We apply our method to data from the London Underground. We find that the layered decomposition estimates the contribution of each origin-destination pair to the flow on each network link, and that the solenoidal and harmonic flows can be described by simple equations, thereby reducing much of the solution to determining gradient flows. Our exploratory analysis suggests it may be feasible to develop solution methods for the transit flow problem with a complexity equivalent to the solution of a hydraulic or electric circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ortúzar, J. de D., Willumsen, L.G.: Modelling Transport. Wiley, New Jersey (2011)

    Google Scholar 

  2. Krylatov, A., Zakharov, V., Tuovinen, T.: Optimization Models and Methods for Equilibrium Traffic Assignment. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34102-2

  3. Barthélémy, M.: The Structure and Dynamics of Cities: Urban Data Analysis and Theoretical Modeling. Cambridge (2016)

    Google Scholar 

  4. Louail, T., et al.: Uncovering the spatial structure of mobility networks. Nat. Commun. 6, 6007 (2015)

    Article  Google Scholar 

  5. Cajueiro, D.O.: Optimal navigation in complex networks. Phys. Rev. E 79, 046103 (2009)

    Article  Google Scholar 

  6. Gallotti, R., Porter, M.A., Barthélémy, M.: Lost in transportation: information measures and cognitive limits in multilayer navigation. Sci. Adv. 2(2), e1500445 (2016)

    Google Scholar 

  7. Ligthill, M.J., Whitham F.R.S.: On kinetic waves II. A theory of traffic flow on crowded roads. Proc. Royal Soc. Ser A. 229(1178), 317–345 (1995)

    Google Scholar 

  8. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Ins. Civil Eng. 2, 325–378 (1952)

    Google Scholar 

  9. Beckmann, M.J., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press, New Haven (1956)

    Google Scholar 

  10. Spiess, H., Florian, M.: Optimal strategies: a new assignment model for transit networks. Transp. Res. B 23B(2), 83–102 (1989)

    Article  Google Scholar 

  11. De Cea, J., Fernández, J.E.: Transit assignment to minimal routes: an efficient new algorithm. Traffic Eng. Control 30, 491–494 (1989)

    Google Scholar 

  12. Legara, E.F., Monterola, C., Lee, K.K., Hung, G.G.: Critical capacity, travel time delays and travel time distribution of rapid mass transit systems. Phys. A 406, 100–106 (2014)

    Article  Google Scholar 

  13. Liu, Y., Bunker, J., Ferreira, L.: Transit: users’ route-choice modelling in transit assignment: a review. Transp. Rev. 30(6), 753–769 (2010)

    Article  Google Scholar 

  14. Janson, B.N., Zozaya-Gorostiza, C.: The problem of cyclic flows in traffic assignment. Transp. Res. B 21B(4), 299–310 (1987)

    Article  Google Scholar 

  15. Raveau, S., Muñoz, J.C., de Grange, L.: A topological route choice model for metro. Transp. Res. A 45(2), 138–147 (2011)

    Google Scholar 

  16. Jiang, X., Lim, L.-H., Yao, Y., Ye, Y.: Statistical ranking and combinatorial Hodge theory. Math. Program. 127(1), 203–244 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Persistent Cohomology and Circular Coordinates. Disc. Comput. Geom. 45, 737–759 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haruna, T., Fujiki, Y.: Hodge decomposition of information flow on small-world networks. Front. Neural Circuit. 10, 77 (2016)

    Article  Google Scholar 

  19. Kichikawa, Y., Iyetomi, H., Iino, T., Inoue, H.: Community structure based on circular flow in a large-scale transaction network. Appl. Netw. Sci. 4(1), 1–23 (2019). https://doi.org/10.1007/s41109-019-0202-8

    Article  Google Scholar 

  20. Grady, L.J., Polimeni, J.R.: Discrete Calculus: Applied Analysis on Graphs for Computational Science. Springer, Cham (2010)

    Book  MATH  Google Scholar 

  21. Lim, L.-H.: Hodge Laplacians on Graphs. SIAM Rev. 62(3), 685–715 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Johnson, J.L., Goldring, T.: Discrete Hodge theory on graphs: a tutorial. Comput. Sci. Eng. 15(5), 42–55 (2013)

    Article  Google Scholar 

  23. Brandes, U.T.: On variants of shortest-path betweenness centrality and their generic computation. Soc. Networks. 30(2), 136–145 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Unchitta Kan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kan, U., López, E. (2022). Layered Hodge Decomposition for Urban Transit Networks. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1073. Springer, Cham. https://doi.org/10.1007/978-3-030-93413-2_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93413-2_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93412-5

  • Online ISBN: 978-3-030-93413-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics