Skip to main content

Clustering-Based Partitioning of Water Distribution Networks for Leak Zone Location

  • Conference paper
  • First Online:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12702))

Included in the following conference series:

Abstract

In recent years, there has been an increase in leak zone identification strategies in water distribution networks. This paper presents an analysis of the effect network partitioning techniques have on the performance of leak zone location methodologies. An SVM classifier is used to identify the leak zone location. The effect of the following clustering methods for network partitioning is analyzed: k-medoids, agglomerative clustering, DBSCAN, and Girvan-Newman algorithm. Both topological and hydraulic variables are considered when performing the clustering with three different sensor configurations. The results obtained demonstrate that the effect of each clustering method on the leak location performance is similar for both types of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chartrand, G., Zhang, P.: A First Course in Graph Theory. Courier Corporation (2012)

    Google Scholar 

  2. Chen, J., Xin, F., Xiao, S.: An iterative method for leakage zone identification in water distribution networks based on machine learning. Struct. Health Monit. (2020). https://doi.org/10.1177/1475921720950470

    Article  Google Scholar 

  3. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (1997)

    Google Scholar 

  4. Quiñones Grueiro, M., Verde, C., Llanes-Santiago, O.: Novel leak location approach in water distribution networks with zone clustering and classification. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A., Salas, J. (eds.) Pattern Recogn., pp. 37–46. Springer International Publishing, Cham (2019)

    Chapter  Google Scholar 

  5. Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric statistical methods. John Wiley & Sons, 2nd Edition (2013)

    Google Scholar 

  6. Jennings, P.C., Lysgaard, S., Hummelshoj, J.S., Vegge, T., Bligaard, T.: Genetic algorithms for computational materials discovery accelerated by machine learning. NPJ Computational Materials 5(46) (2019)

    Google Scholar 

  7. Jung, Y., Park, H., Du, D.Z., Drake, B.L.: A decision criterion for the optimal number of clusters in hierarchical clustering. J. Global Optim. 25(1), 91–111 (2002)

    Article  MathSciNet  Google Scholar 

  8. Kang, J., Park, Y.J., Lee, J., Wang, S.H.: Novel leakage detection by ensemble CNN-SVM and graph-based localization in water distribution systems. IEEE Trans. Ind. Electron. 65(5), 4279–4289 (2017)

    Article  Google Scholar 

  9. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data. An Introduction to Cluster Analysis. John Wiley & Sons (2005)

    Google Scholar 

  10. Kaufman, L., Rousseeuw, P.J.: Clustering by means of medoids. In: Statistical Data Analysis Based on the L1-Norm Conference, pp. 405–416. Elsevier Science, Neuchatel (1987)

    Google Scholar 

  11. Montgomery, D.C.: Design and Analysis of Experiments. John Wiley & Sons, 8th Edition (2013)

    Google Scholar 

  12. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  13. Rheman, S.U., Khan, K., Aziz, K., Fong, S., Sarasvady, S.: Dbscan: Past, present and future. In: 2014 Fifth International Conference on the Applications of Digital Information and Web Technologies (ICADIWT 2014) (2014)

    Google Scholar 

  14. Rossman, L.A.: Epanet 2 Users Manual (2000)

    Google Scholar 

  15. Sanz, G., Meseguer, J., Pérez, R.: Model calibration for leak localization, a real application. In: CCWI 2017: 15th Computing and Control for the Water Industry Conference 2017, pp. 1–9. Sheffield (UK) (September 2017)

    Google Scholar 

  16. Shekofteh, M., Jalili-Ghazizadeh, M., Yazdi, J.: A methodology for leak detection in water distribution networks using graph theory and artificial neural network. Urban Water J. 17(6), 525–533 (2020)

    Article  Google Scholar 

  17. Soldevila, A., Fernández-canti, R., Blesa, J., Tornil-sin, S., Puig, V.: Leak localization in water distribution networks using bayesian classifiers. J. Process Control 55, 1–9 (2017)

    Article  Google Scholar 

  18. Sun, C., Parellada, B., Puig, V., Cembrano, G.: Leak localization in water distribution networks using pressure and data-driven classifier approach. Water 12, 54 (2020)

    Article  Google Scholar 

  19. Wang, Q., Guidolin, M., Savic, D., Kapelan, Z.: Two-objective design of benchmark problems of a water distribution system via MOEAs : towards the best-known approximation of the true pareto front. J. Water Resour. Plan. Manage. 141(3), 1–14 (2015)

    Article  Google Scholar 

  20. Zhang, Q., Wu, Z.Y., Zhao, M., Qi, J.: Leakage zone identification in large-scale water distribution systems using multiclass support vector machines. J. Water Resour. Plan. Manage. 142(11), 04016042 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ares-Milián, M.J., Quiñones-Grueiro, M., Corona, C.C., Llanes-Santiago, O. (2021). Clustering-Based Partitioning of Water Distribution Networks for Leak Zone Location. In: Tavares, J.M.R.S., Papa, J.P., González Hidalgo, M. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2021. Lecture Notes in Computer Science(), vol 12702. Springer, Cham. https://doi.org/10.1007/978-3-030-93420-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93420-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93419-4

  • Online ISBN: 978-3-030-93420-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics