Skip to main content

Developing an Online Examination Timetabling System Using Artificial Bee Colony Algorithm in Higher Education

  • Conference paper
  • First Online:
Broadband Communications, Networks, and Systems (BROADNETS 2021)

Abstract

Educational timetabling is a fundamental problem impacting schools and universities’ effective operation in many aspects. Different priorities for constraints in different educational institutions result in the scarcity of universal approaches to the problems. Recently, COVID-19 crisis causes the transformation of traditional classroom teaching protocols, which challenge traditional educational timetabling. Especially for examination timetabling problems, as the major hard constraints change, such as unlimited room capacity, non-invigilator and diverse exam durations, the problem circumstance varies. Based on a scenario of a local university, this research proposes a conceptual model of the online examination timetabling problem and presents a conflict table for constraint handling. A modified Artificial Bee Colony algorithm is applied to the proposed model. The proposed approach is simulated with a real case containing 16,246 exam items covering 9,366 students and 209 courses. The experimental results indicate that the proposed approach can satisfy every hard constraint and minimise the soft constraint violation. Compared to the traditional constraint programming method, the proposed approach is more effective and can provide more balanced solutions for the online examination timetabling problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schaerf, A.: A survey of automated timetabling. Artif. Intell. Rev. 13(2), 87–127 (1999). https://doi.org/10.1023/A:1006576209967

    Article  Google Scholar 

  2. Wren, A.: Scheduling, timetabling and rostering—a special relationship? In: Burke, E., Ross, P. (eds.) Practice and Theory of Automated Timetabling. LNCS, vol. 1153, pp. 46–75. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61794-9_51

    Chapter  Google Scholar 

  3. Babaei, H., Karimpour, J., Hadidi, A.: A survey of approaches for university course timetabling problem. Comput. Ind. Eng. 86, 43–59 (2015)

    Article  Google Scholar 

  4. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-heuristics: an emerging direction in modern search technology. In: Glover, F., Kochenberger, G.A. (eds.) Handbook of Metaheuristics. ISOR, vol. 57, pp. 457–474. Springer, Boston (2003). https://doi.org/10.1007/0-306-48056-5_16

    Chapter  Google Scholar 

  5. Zhu, K., Li, L., Li, M.: A survey of computational intelligence in educational timetabling. Int. J. Mach. Learn. Comput. 11(1), 40–47 (2021)

    Article  MathSciNet  Google Scholar 

  6. Appleby, J., Blake, D., Newman, E.: Techniques for producing school timetables on a computer and their application to other scheduling problems. Comput. J. 3(4), 237–245 (1961)

    Article  MathSciNet  Google Scholar 

  7. Song, T., Liu, S., Tang, X., Peng, X., Chen, M.: An iterated local search algorithm for the University Course Timetabling Problem. Appl. Soft Comput. 68, 597–608 (2018)

    Article  Google Scholar 

  8. Arbaoui, T., Boufflet, J., Moukrim, A.: Lower bounds and compact mathematical formulations for spacing soft constraints for university examination timetabling problems. Comput. Oper. Res. 106, 133–142 (2019)

    Article  MathSciNet  Google Scholar 

  9. Kahar, M., Bakar, S., Shing, L., Mandal, A.: Solving kolej poly-tech mara examination timetabling problem. Adv. Sci. Lett. 24(10), 7577–7581 (2018)

    Article  Google Scholar 

  10. Valouxis, C., Gogos, C., Alefragis, P., Housos E.: Decomposing the high school timetable problem. In: Practice and Theory of Automated Timetabling (PATAT 2012), Son, Norway (2012)

    Google Scholar 

  11. Junn, K.Y., Obit, J.H., Alfred, R.: The study of genetic algorithm approach to solving university course timetabling problem. In: Alfred, R., Iida, H., Ag, A.A., Ibrahim, Y.L. (eds.) Computational Science and Technology. LNEE, vol. 488, pp. 454–463. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-8276-4_43

    Chapter  Google Scholar 

  12. Jamili, A., Hamid, M., Gharoun, H., Khoshnoudi, R.: Developing a comprehensive and multi-objective mathematical model for university course timetabling problem: a real case study. In: Conference: Proceedings of the International Conference on Industrial Engineering and Operations Management, Paris, France (2018)

    Google Scholar 

  13. Skoullis, V., Tassopoulos, I., Beligiannis, G.: Solving the high school timetabling problem using a hybrid cat swarm optimization based algorithm. Appl. Soft Comput. 52, 277–289 (2017)

    Article  Google Scholar 

  14. Dorneles, Á., de Araújo, O.C., Buriol, L.: A column generation approach to high school timetabling modeled as a multicommodity flow problem. Eur. J. Oper. Res. 256(3), 685–695 (2017)

    Article  MathSciNet  Google Scholar 

  15. Tassopoulos, I., Iliopoulou, C., Beligiannis, G.: Solving the Greek school timetabling problem by a mixed integer programming model. J. Oper. Res. Soc. 71(1), 117–132 (2020)

    Article  Google Scholar 

  16. Leite, N., Melício, F., Rosa, A.: A fast simulated annealing algorithm for the examination timetabling problem. Expert Syst. Appl. 122, 137–151 (2019)

    Article  Google Scholar 

  17. June, T.L., Obit, J.H., Leau, Y.B., Bolongkikit, J.: Implementation of constraint programming and simulated annealing for examination timetabling problem. In: Alfred, R., Lim, Y., Ibrahim, A., Anthony, P. (eds.) Computational Science and Technology. LNEE, vol. 481, pp. 175–184. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-2622-6_18

    Chapter  Google Scholar 

  18. Güler, M., Geçici, E.: A spreadsheet-based decision support system for examination timetabling. Turk. J. Electr. Eng. Comput. Sci. 28(3), 1584–1598 (2020)

    Article  Google Scholar 

  19. Aldeeb, B., Al-Betar, A., Abdelmajeed, A., Younes, M., AlKenani, M., Alomoush, W.: A comprehensive review of uncapacitated university examination timetabling problem. Int. J. Appl. Eng. Res. 14(24), 4524–4547 (2019)

    Google Scholar 

  20. Kaur, M., Saini, S.: A review of metaheuristic techniques for solving university course timetabling problem. In: Goar, V., Kuri, M., Kumar, R., Senjyu, T. (eds.) Advances in Information Communication Technology and Computing. LNNS, vol. 135, pp. 19–25. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5421-6_3

    Chapter  Google Scholar 

  21. Tan, J., Goh, S., Kendall, G., Sabar, N.: A survey of the state-of-the-art of optimisation methodologies in school timetabling problems. Expert Syst. Appl. 165, 113943 (2021)

    Article  Google Scholar 

  22. Memeti, S., Pllana, S., Binotto, A., Kołodziej, J., Brandic, I.: Using meta-heuristics and machine learning for software optimization of parallel computing systems: a systematic literature review. Computing 101(8), 893–936 (2018). https://doi.org/10.1007/s00607-018-0614-9

    Article  MathSciNet  Google Scholar 

  23. Salhi, S.: Heuristic Search: The Emerging Science of Problem Solving. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49355-8

    Book  Google Scholar 

  24. Gandomi, A., Yang, X., Talatahari, S., Alavi, A.: Metaheuristic algorithms in modeling and optimization. In: Metaheuristic Applications in Structures and Infrastructures, pp. 1–24 (2013)

    Google Scholar 

  25. Kim, J., Yang, H.: Effects of heuristic type on purchase intention in mobile social commerce: focusing on the mediating effect of shopping value. J. Distrib. Sci. 17(10), 73–81 (2019)

    Article  Google Scholar 

  26. Pillay, N., Rong, Q.: Hyper-Heuristics: Theory and Applications. Springer, Cham (2018)

    Book  Google Scholar 

  27. Kouhbanani, S., Farid, D., Sadeghi, H.: Selection of optimal portfolio using expert system in mamdani fuzzy environment. Ind. Manag. Stud. 16(48), 131–151 (2018)

    Google Scholar 

  28. Bělohlávek, R., Dauben, J., Klir, G.: Fuzzy Logic and Mathematics: A Historical Perspective. Oxford University Press, Oxford (2017)

    Book  Google Scholar 

  29. Junn, K.Y., Obit, J.H., Alfred, R., Bolongkikit, J.: A formal model of multi-agent system for university course timetabling problems. In: Alfred, R., Lim, Y., Ibrahim, A., Anthony, P. (eds.) Computational Science and Technology. LNEE, vol. 481, pp. 215–225. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-2622-6_22

    Chapter  Google Scholar 

  30. Soria-Alcaraz, J.A., et al.: Effective learning hyper-heuristics for the course timetabling problem. Eur. J. Oper. Res. 238(1), 77–86 (2014)

    Article  MathSciNet  Google Scholar 

  31. Soria-Alcaraz, J., Ochoa, G., Swan, J., Carpio, M., Puga, H., Burke, E.: Iterated local search using an add and delete hyper-heuristic for university course timetabling. Appl. Soft Comput. 40, 581–593 (2016)

    Article  Google Scholar 

  32. Kheiri, A., Keedwell, M.: A hidden Markov model approach to the problem of heuristic selection in hyper-heuristics with a case study in high school timetabling problems. Evol. Comput. 25(3), 473–501 (2017)

    Article  Google Scholar 

  33. Kasm, O., Mohandes, B., Diabat, A., Khatib, S.: Exam timetabling with allowable conflicts within a time window. Comput. Ind. Eng. 127, 263–273 (2019)

    Article  Google Scholar 

  34. Bolaji, A., Khader, A., Al-Betar, M., Awadallah, M.: University course timetabling using hybridized artificial bee colony with hill climbing optimizer. J. Comput. Sci. 5(5), 809–818 (2014)

    Article  Google Scholar 

  35. Akkan, C., Gülcü, A.: A bi-criteria hybrid Genetic Algorithm with robustness objective for the course timetabling problem. Comput. Oper. Res. 90, 22–32 (2018)

    Article  MathSciNet  Google Scholar 

  36. Sutar, S., Bichkar, R.: High school timetabling using tabu search and partial feasibility preserving genetic algorithm. Int. J. Adv. Eng. Technol. 10(3), 421 (2017)

    Google Scholar 

  37. Bolaji, A., Khader, A., Al-Betar, M., Awadallah, M.: A hybrid nature-inspired artificial bee colony algorithm for uncapacitated examination timetabling problems. J. Intell. Syst. 24(1), 37–54 (2015)

    Article  Google Scholar 

  38. Fong, C., Asmuni, H., McCollum, B.: A hybrid swarm-based approach to university timetabling. IEEE Trans. Evol. Comput. 19(6), 870–884 (2015)

    Article  Google Scholar 

  39. Pappis, C.P., Siettos, C.I.: Fuzzy reasoning. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies, pp. 437–474. Springer, Boston (2005). https://doi.org/10.1007/0-387-28356-0_15

    Chapter  Google Scholar 

  40. June, T.L., Obit, J.H., Leau, Y.-B., Bolongkikit, J., Alfred, R.: Sequential constructive algorithm incorporate with fuzzy logic for solving real world course timetabling problem. In: Alfred, R., Lim, Y., Haviluddin, H., On, C.K. (eds.) Computational Science and Technology. LNEE, vol. 603, pp. 257–267. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0058-9_25

    Chapter  Google Scholar 

  41. Babaei, H., Karimpour, J., Hadidi, A.: Generating an optimal timetabling for multi-departments common lecturers using hybrid fuzzy and clustering algorithms. Soft. Comput. 23(13), 4735–4747 (2018). https://doi.org/10.1007/s00500-018-3126-9

    Article  Google Scholar 

  42. Cavdur, F., Kose, M.: A fuzzy logic and binary-goal programming-based approach for solving the exam timetabling problem to create a balanced-exam schedule. Int. J. Fuzzy Syst. 18(1), 119–129 (2015). https://doi.org/10.1007/s40815-015-0046-z

    Article  Google Scholar 

  43. Tkaczyk, R., Ganzha, M., Paprzycki, M.: AgentPlanner-agent-based timetabling system. Informatica 40(1) (2016)

    Google Scholar 

  44. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical report-TR06, Erciyes university, Engineering Faculty, Computer (2005)

    Google Scholar 

  45. Bukchin, Y., Raviv, T.: Constraint programming for solving various assembly line balancing problems. Omega 78, 57–68 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge CQUniversity to give permission to use the de-identified student enrolment data for the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaixiang Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, K., Li, L.D., Li, M. (2022). Developing an Online Examination Timetabling System Using Artificial Bee Colony Algorithm in Higher Education. In: Xiang, W., Han, F., Phan, T.K. (eds) Broadband Communications, Networks, and Systems. BROADNETS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 413. Springer, Cham. https://doi.org/10.1007/978-3-030-93479-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93479-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93478-1

  • Online ISBN: 978-3-030-93479-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics