Skip to main content

State Complexity of Union and Intersection on Graph-Walking Automata

  • Conference paper
  • First Online:
Descriptional Complexity of Formal Systems (DCFS 2021)

Abstract

Finite automata traversing graphs by moving along their edges are known as graph-walking automata (GWA). This paper investigates the state complexity of union and intersection for this model. It is proved that the union of GWA with m and n states, with \(m \leqslant n\), operating on graphs with k labels of edge end-points, is representable by a GWA with \(2km+n+1\) states, and at least \(2(k-3)(m-1)+n-1\) states are necessary in the worst case. For the intersection, the upper bound is \((2k+1)m+n\) and the lower bound is \(2(k-3)(m-1)+n-1\).

This work was supported by the Russian Science Foundation, project 18-11-00100.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Birget, J.-C.: Partial orders on words, minimal elements of regular languages, and state complexity. Theor. Comput. Sci. 119, 267–291 (1993). http://dx.doi.org/10.1016/0304-3975(93)90160-U

  2. Bojańczyk, M., Colcombet, T.: Tree-walking automata do not recognize all regular languages. SIAM J. Comput. 38(2), 658–701 (2008). https://doi.org/10.1137/050645427

    Article  MathSciNet  MATH  Google Scholar 

  3. Budach, L.: Automata and labyrinths. Mathematische Nachrichten 86(1), 195–282 (1978). http://dx.doi.org/10.1002/mana.19780860120

  4. Disser, Y., Hackfeld, J., Klimm, M.: Tight bounds for undirected graph exploration with pebbles and multiple agents. J. ACM 66(6), 40:1–40:41 (2019). https://doi.org/10.1145/3356883

  5. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005). http://dx.doi.org/10.1016/j.tcs.2005.07.014

  6. Geffert, V., Kapoutsis, C.A., Zakzok, M.: Complement for two-way alternating automata. Acta Informatica 58(5), 463–495 (2021). https://doi.org/10.1007/s00236-020-00373-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Geffert, V., Mereghetti, C., Pighizzini, G.: Complementing two-way finite automata. Inf. Comput. 205(8), 1173–1187 (2007). http://dx.doi.org/10.1016/j.ic.2007.01.008

  8. Geffert, V., Okhotin, A.: Transforming two-way alternating finite automata to one-way nondeterministic automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8634, pp. 291–302. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44522-8_25

    Chapter  Google Scholar 

  9. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular languages. Int. J. Found. Comput. Sci. 14, 1087–1102 (2003). http://dx.doi.org/10.1142/S0129054103002199

  10. Kunc, M., Okhotin, A.: State complexity of union and intersection for two-way nondeterministic finite automata. Fundamenta Informaticae 110(1–4), 231–239 (2011). http://dx.doi.org/10.3233/FI-2011-540

  11. Kunc, M., Okhotin, A.: Reversibility of computations in graph-walking automata. Inf. Comput. 275, Article No. 104631 (2020). https://doi.org/10.1016/j.ic.2020.104631

  12. Martynova, O., Okhotin, A.: Lower bounds for graph-walking automata. In: 38th Annual Symposium on Theoretical Aspects of Computer Science (STACS 2021, Saarbrücken, Germany, 16–19 March 2021), LIPIcs, vol. 187, pp. 52:1–52:13 (2020). https://doi.org/10.4230/LIPIcs.STACS.2021.52

  13. Maslov, A.N.: Estimates of the number of states of finite automata. Sov. Math. Dokl. 11, 1373–1375 (1970)

    MATH  Google Scholar 

  14. Muscholl, A., Samuelides, M., Segoufin, L.: Complementing deterministic tree-walking automata. Inf. Proces. Lett. 99(1), 33–39 (2006). http://dx.doi.org/10.1016/j.ipl.2005.09.017

  15. Okhotin, A.: Graph-Walking automata: from whence they come, and whither they are bound. In: Hospodár, M., Jirásková, G. (eds.) CIAA 2019. LNCS, vol. 11601, pp. 10–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23679-3_2

    Chapter  MATH  Google Scholar 

  16. Piao, X., Salomaa, K.: Operational state complexity of nested word automata. Theor. Comput. Sci. 410, 3290–3302 (2009). http://dx.doi.org/10.1016/j.tcs.2009.05.002

  17. Sipser, M.: Halting space-bounded computations. Theor. Comput. Sci. 10(3), 335–338 (1980). http://dx.doi.org/10.1016/0304-3975(80)90053-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Okhotin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martynova, O., Okhotin, A. (2021). State Complexity of Union and Intersection on Graph-Walking Automata. In: Han, YS., Ko, SK. (eds) Descriptional Complexity of Formal Systems. DCFS 2021. Lecture Notes in Computer Science(), vol 13037. Springer, Cham. https://doi.org/10.1007/978-3-030-93489-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93489-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93488-0

  • Online ISBN: 978-3-030-93489-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics