Abstract
It is shown that a two-way deterministic finite automaton (2DFA) with n states over an alphabet \(\varSigma \) can be transformed to an equivalent one-way automaton (1DFA) with \(|{\varSigma }|\cdot \mathcal {F}(n)+1\) states, where \(\mathcal {F}(n) =\max _{k=0}^{n}k^{n-k+1} \le (n+1)^{n+1}/(\ln (n+1) \cdot e^{1-o(1)})^{n+1}\).
This reflects the fact that, by keeping the last processed symbol in memory, the simulating 1DFA needs to remember only the state from which the 2DFA leaves the prefix read so far for the first time to the right together with a function that maps some \(n-k\) states moving to the left from the last processed symbol to some other k states moving to the right from this symbol. This reduces the number of functions describing the behaviour of the 2DFA on the prefix read so far.
A close lower bound of \(\mathcal {F}(n)\) states is established using a 5-symbol alphabet. The complexity of transforming a sweeping or a direction-determinate 2DFA to a 1DFA is shown to be exactly \(\mathcal {F}(n)\).
Supported by the Slovak grant contract VEGA 1/0177/21.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barnes, B.: A two-way automaton with fewer states than any equivalent one-way automaton. IEEE Trans. Comput. C-20, 474–475 (1971)
Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic unary automata into simpler automata. Theoret. Comput. Sci. 295, 189–203 (2003)
Geffert, V., Okhotin, A.: One-way simulation of two-way finite automata over small alphabets. In: Proceedings of Non-Classical Models of Automata & Application, pp. 151–162. Österreichische Comput. Gesellschaft (2013)
Geffert, V., Okhotin, A.: Transforming two-way alternating finite automata to one-way nondeterministic automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8634, pp. 291–302. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44522-8_25
Kapoutsis, C.: Removing bidirectionality from nondeterministic finite automata. In: Jȩdrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 544–555. Springer, Heidelberg (2005). https://doi.org/10.1007/11549345_47
Kapoutsis, C.: Algorithms and lower bounds in finite automata size complexity. Ph.D. thesis, Massachusetts Institute of Technology (2006)
Kunc, M., Okhotin, A.: Describing periodicity in two-way deterministic finite automata using transformation semigroups. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 324–336. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22321-1_28
Kunc, M., Okhotin, A.: Reversibility of computations in graph-walking automata. Inform. Comput. 275 (2020). Art. 104631
Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata. SIAM J. Comput. 30, 1976–1992 (2001)
Moore, F.: On the bounds for state-set size in the proofs of equivalence between deterministic, nondeterministic, and two-way finite automata by deterministic automata. IEEE Trans. Comput. C-20, 1211–1214 (1971)
Petrov, S., Okhotin, A.: On the transformation of two-way deterministic finite automata to unambiguous finite automata. In: Leporati, A., Martín-Vide, C., Shapira, D., Zandron, C. (eds.) LATA 2021. LNCS, vol. 12638, pp. 81–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68195-1_7
Rabin, M., Scott, D.: Finite automata and their decision problems. IBM J. Res. Develop. 3, 114–125 (1959)
Shepherdson, J.: The reduction of two-way automata to one-way automata. IBM J. Res. Develop. 3, 198–200 (1959)
Sipser, M.: Lower bounds on the size of sweeping automata. In: Proceedings of the ACM Symposium on Theory of Computing, pp. 360–364 (1979)
Vardi, M.: A note on the reduction of two-way automata to one-way automata. Inform. Process. Lett. 30, 261–264 (1989)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Geffert, V., Okhotin, A. (2021). Deterministic One-Way Simulation of Two-Way Deterministic Finite Automata over Small Alphabets. In: Han, YS., Ko, SK. (eds) Descriptional Complexity of Formal Systems. DCFS 2021. Lecture Notes in Computer Science(), vol 13037. Springer, Cham. https://doi.org/10.1007/978-3-030-93489-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-93489-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93488-0
Online ISBN: 978-3-030-93489-7
eBook Packages: Computer ScienceComputer Science (R0)