Abstract
We investigate the state complexity of the upward and downward closure and interior operations on commutative regular languages. Then, we systematically study the state complexity of these operations and of the shuffle operation on commutative group languages and commutative aperiodic (or star-free) languages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brzozowski, J., Jirásková, G., Liu, B., Rajasekaran, A., Szykuła, M.: On the state complexity of the shuffle of regular languages. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS, vol. 9777, pp. 73–86. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41114-9_6
Brzozowski, J.A., Liu, B.: Quotient complexity of star-free languages. Int. J. Found. Comput. Sci. 23(6), 1261–1276 (2012)
Brzozowski, J.A., Simon, I.: Characterizations of locally testable events. Discret. Math. 4(3), 243–271 (1973)
Campbell, R.H., Habermann, A.N.: The specification of process synchronization by path expressions. In: Gelenbe, E., Kaiser, C. (eds.) OS 1974. LNCS, vol. 16, pp. 89–102. Springer, Heidelberg (1974). https://doi.org/10.1007/BFb0029355
Câmpeanu, C., Salomaa, K., Yu, S.: Tight lower bound for the state complexity of shuffle of regular languages. J. Autom. Lang. Comb. 7(3), 303–310 (2002)
Castiglione, G., Restivo, A.: On the shuffle of star-free languages. Fundam. Informaticae 116(1–4), 35–44 (2012)
Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity. J. Autom. Lang. Comb. 21(4), 251–310 (2017)
Cano Gómez, A., Álvarez, G.I.: Learning commutative regular languages. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS (LNAI), vol. 5278, pp. 71–83. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88009-7_6
Gruber, H., Holzer, M., Kutrib, M.: The size of Higman-Haines sets. Theor. Comput. Sci. 387(2), 167–176 (2007)
Gruber, H., Holzer, M., Kutrib, M.: More on the size of Higman-Haines sets: effective constructions. Fundam. Informaticae 91(1), 105–121 (2009)
Haines, L.H.: On free monoids partially ordered by embedding. J. Comb. Theory 6, 94–98 (1969)
Héam, P.: On shuffle ideals. RAIRO Theor. Informatics Appl. 36(4), 359–384 (2002)
Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3) 2(7), 326–336 (1952)
Hoffmann, S.: Commutative regular languages - properties and state complexity. Inf. Comput. (submitted)
Hoffmann, S.: Commutative regular languages – properties and state complexity. In: Ćirić, M., Droste, M., Pin, J.É. (eds.) CAI 2019. LNCS, vol. 11545, pp. 151–163. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21363-3_13
Hoffmann, S.: Commutative regular languages with product-form minimal automata. In: Han, Y.-S., Ko, S.-K. (eds.) DCFS 2021, LNCS 13037, pp. 51–63. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93489-7_5
Hoffmann, S.: State complexity of projection on languages recognized by permutation automata and commuting letters. In: Moreira, N., Reis, R. (eds.) DLT 2021. LNCS, vol. 12811, pp. 192–203. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81508-0_16
Hospodár, M., Mlynárčik, P.: Operations on permutation automata. In: Jonoska, N., Savchuk, D. (eds.) DLT 2020. LNCS, vol. 12086, pp. 122–136. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48516-0_10
Karandikar, P., Niewerth, M., Schnoebelen, P.: On the state complexity of closures and interiors of regular languages with subwords and superwords. Theoret. Comput. Sci. 610, 91–107 (2016)
van Leeuwen, J.: Effective constructions in well-partially-ordered free monoids. Discret. Math. 21(3), 237–252 (1978)
Maslov, A.N.: Estimates of the number of states of finite automata. Dokl. Akad. Nauk SSSR 194(6), 1266–1268 (1970)
Mazurkiewicz, A.: Parallel recursive program schemes. In: Bečvář, J. (ed.) MFCS 1975. LNCS, vol. 32, pp. 75–87. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07389-2_183
McNaughton, R.: The loop complexity of pure-group events. Inf. Control 11(1/2), 167–176 (1967)
Okhotin, A.: On the state complexity of scattered substrings and superstrings. Fundam. Informaticae 99(3), 325–338 (2010)
Perrot, J.: Varietes de langages et operations. Theor. Comput. Sci. 7, 197–210 (1978)
Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacobsthal’s function. Int. J. Found. Comput. Sci. 13(1), 145–159 (2002)
Restivo, A.: The shuffle product: new research directions. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 70–81. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15579-1_5
Riddle, W.E.: An approach to software system behavior description. Comput. Lang. 4(1), 29–47 (1979)
Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8(2), 190–194 (1965)
Shaw, A.C.: Software descriptions with flow expressions. IEEE Trans. Softw. Eng. 4, 242–254 (1978)
Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations on regular languages. Theoret. Comput. Sci. 125(2), 315–328 (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Hoffmann, S. (2021). State Complexity Investigations on Commutative Languages – the Upward and Downward Closure, Commutative Aperiodic and Commutative Group Languages. In: Han, YS., Ko, SK. (eds) Descriptional Complexity of Formal Systems. DCFS 2021. Lecture Notes in Computer Science(), vol 13037. Springer, Cham. https://doi.org/10.1007/978-3-030-93489-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-93489-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93488-0
Online ISBN: 978-3-030-93489-7
eBook Packages: Computer ScienceComputer Science (R0)