Skip to main content

Smartphone Mammography for Breast Cancer Screening

  • Conference paper
  • First Online:
Big Data Analytics (BDA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13147))

Included in the following conference series:

Abstract

In 2020 alone approximately 2.3 million women were diagnosed with breast cancer which caused over 685,000 deaths worldwide. Breast cancer affects women in developing countries more severely than in developed country such that over 60% of deaths due to breast cancer occur in developing countries. Deaths due to breast cancer can be reduced significantly if it is diagnosed at an early stage. However, in developing countries cancer is often diagnosed when it is in the advanced stage due to limited medical resources available to women, lack of awareness, financial constraints as well as cultural stigma associated with traditional screening methods. Our paper aims to provide an alternative to women that is easily available to them, affordable, safe, non-invasive and can be self-administered. We propose the use of a smartphone’s inbuilt camera and flashlight for breast cancer screening before any signs or symptoms begin to appear. This is a novel approach as there is presently no device that can be used by women themselves without any supervision from a medical professional and uses a smartphone without any additional external devices for breast cancer screening. The smartphone mammography brings the screening facility to the user such that it can be used at the comfort and privacy of their homes without the need to travel long distances to hospitals or diagnostic centers. The theory of the system is that when visible light penetrates through the skin into the breast tissue, it reflects back differently in normal breast tissue as compared to tissue with anomalies. A phantom breast model, which mimics real human breast tissue, is used to develop the modality. We make use of computer vision and image processing techniques to analyze the difference between an image taken of a normal breast and that of one with irregularities in order to detect lumps in the breast tissue and also make some diagnosis on its size, density and the location.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Labib, N.A., Ghobashi, M.M., Moneer, M.M., Helal, M.H., Abdalgaleel, S.A.: Evaluation of BreastLight as a tool for early detection of breast lesions among females attending National Cancer Institute, Cairo University. Asian Pac. J. Cancer Prev. 14(8), 4647–4650 (2013). https://doi.org/10.7314/apjcp.2013.14.8.4647

    Article  Google Scholar 

  2. American Cancer Society: Breast Cancer Facts & Figures 2019–2020. American Cancer Society, Inc., Atlanta (2019)

    Google Scholar 

  3. Narod, S.A., Iqbal, J., Miller, A.B.: Why have breast cancer mortality rates declined? J. Cancer Policy 5, 8–17 (2015). https://doi.org/10.1016/j.jcpo.2015.03.002

    Article  Google Scholar 

  4. Vieira, R.A., Biller, G., Uemura, G., Ruiz, C.A., Curado, M.P.: Breast cancer screening in developing countries. Clinics (Sao Paulo) 72(4), 244–253 (2017). https://doi.org/10.6061/clinics/2017(04)09

    Article  Google Scholar 

  5. Forouzanfar, M.H., Foreman, K., Lozano, R.: The Challenge Ahead: Progress and Setbacks in Breast and Cervical Cancer. Institute for Health Metrics and Evaluation (IHME) Seattle (2011)

    Google Scholar 

  6. Singh, S., Shrivastava, J.P., Dwivedi, A.: Breast cancer screening existence in India: a non-existing reality. Indian J. Med. Paediatr. Oncol. 36(4), 207–209 (2015). https://doi.org/10.4103/0971-5851.171539

    Article  Google Scholar 

  7. Kathrikolly, T., Shetty, R., Nair, S.: Opportunities and barriers to breast cancer screening in a rural community in Coastal Karnataka, India: a qualitative analysis. Asian Pac. J. Cancer Prev. 21(9), 2569–2575 (2020). https://doi.org/10.31557/APJCP.2020.21.9.2569

    Article  Google Scholar 

  8. Parsa, P., Kandiah, M., Rahman, H.A., Zulkefli, N.M.: Barriers for breast cancer screening among Asian women: a mini literature review. Asian Pac. J. Cancer Prev. 7(4), 509–514 (2006)

    Google Scholar 

  9. Choe, R.: Diffuse Optical Tomography and Spectroscopy of Breast Cancer and Fetal Brain (2005)

    Google Scholar 

  10. Kumar, J.U., Sreekanth, V., Reddy, H.R., Sridhar, A.B., Kodali, N., Prabhu, A.: Screening mammography: a pilot study on its pertinence in Indian population by means of a camp. J. Clin. Diagn. Res. 11(8), TC29–TC32 (2017)

    Google Scholar 

  11. The Hindu. https://www.thehindu.com/sci-tech/health/Breast-cancer-mdash-a-wake-up-call-for-Indian-women

  12. Singh, J.: Growth and potential of wireless internet user in rural India. Psychol. Edu. An Interdis. J. 58(2), 1010–1022 (2021)

    Article  Google Scholar 

  13. Blue Phantom Homepage. https://www.bluephantom.com

  14. Kim, M.J., Su, M.Y., Yu, H.J.: US-localized diffuse optical tomography in breast cancer: comparison with pharmacokinetic parameters of DCE-MRI and with pathologic biomarkers. BMC Cancer 16(1) (2016). Article no. 50. https://doi.org/10.1186/s12885-016-2086-7

  15. Hadjipanayis, C.G., Jiang, H., Roberts, D.W., Yang, L.: Current and future clinical applications for optical imaging of cancer: from intraoperative surgical guidance to cancer screening. Semin. Oncol. 38(1), 109–118 (2011). https://doi.org/10.1053/j.seminoncol.2010.11.008

    Article  Google Scholar 

  16. Lannaccone, S., Gicalone, M., Berettini, G., Potí, L.: An innovative approach to diffuse optical tomography using code division multiplexing. Europ. Fut. Technol. Conf. Exhib. 7, 202–207 (2011). https://doi.org/10.1016/j.procs.2011.09.056

    Article  Google Scholar 

  17. Lin, J.L., Ghassemi, P., Chen, Y., Pfefer, J.: Hyperspectral imaging with near infrared-enabled mobile phones for tissue oximetry. Opt. Biophotonics Low-Res. Settings IV 10485, 895–910 (2018). https://doi.org/10.1117/12.2290870

  18. Peters, V.G., Wyman, D.R., Patterson, M.S., Frank, G.L.: Optical properties of normal and diseased human breast tissues in the visible and near infrared. Phys. Med. Biol. 35(9), 1317–1334 (1990). https://doi.org/10.1088/0031-9155/35/9/010

    Article  Google Scholar 

  19. Taroni, P., Paganoni, A.M., Ieva, F., Pifferi, A.: Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: a pilot study. Sci. Rep. 7 (2017). Article no. 40683. https://doi.org/10.1038/srep40683

  20. Joh, D.Y., Heggestad, J.T., Zhang, S., Anderson, G.R. et al.: Cellphone enabled point-of-care assessment of breast tumor cytology and molecular HER2 expression from fine-needle aspirates. NPJ Breast Cancer 7 (85), (2021). https://doi.org/10.1038/s41523-021-00290-0

  21. Ma, J., et al.: A portable breast cancer detection system based on smartphone with infrared camera. Vibroeng. PROCEDIA 26, 57–63 (2019). https://doi.org/10.21595/vp.2019.20978

    Article  Google Scholar 

  22. Hailemariam, Y., Yazdinejad, A., Parizi, R.M., Srivastava, G. et al.: An empirical evaluation of AI deep explainable tools. In: IEEE Globecom Workshops, 1–6 (2020). https://doi.org/10.1109/GCWkshps50303.2020.9367541

  23. Koppu, S., Maddikunta, P.K.R., Srivastava, G.: Deep learning disease prediction model for use with intelligent robots. Comput. Electr. Eng. Int. J. 87 (2020). Article no. 106765. https://doi.org/10.1016/j.compeleceng.2020.106765

  24. Lu, G., Fei, B.: Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1) (2014). Article no. 010901. https://doi.org/10.1117/1.JBO.19.1.010901

  25. Talukder, A.K., Haas, R.E.: AIoT: AI meets IoT and web in smart healthcare. In: 13th ACM Web Science Conference 2021 (WebSci ’21 Companion), ACM, New York, NY, USA (2021). https://doi.org/10.1145/3462741.3466650

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asoke K. Talukder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Basu, R., Madarkal, M., Talukder, A.K. (2021). Smartphone Mammography for Breast Cancer Screening. In: Srirama, S.N., Lin, J.CW., Bhatnagar, R., Agarwal, S., Reddy, P.K. (eds) Big Data Analytics. BDA 2021. Lecture Notes in Computer Science(), vol 13147. Springer, Cham. https://doi.org/10.1007/978-3-030-93620-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93620-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93619-8

  • Online ISBN: 978-3-030-93620-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics