Skip to main content

Bridging the Inferential Gaps in Healthcare

  • Conference paper
  • First Online:
Big Data Analytics (BDA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13147))

Included in the following conference series:

Abstract

Inferential gaps are the combined effect of reading-to-cognition gaps as well as the knowledge-to-action gaps. Misdiagnoses, medical errors, prescription errors, surgical errors, under-treatments, over-treatments, unnecessary lab tests, etc. – are all caused by inferential gaps. Late diagnosis of cancer is also due to the inferential gaps at the primary care. Even the medical climate crisis caused by misuse, underuse, or overuse of antibiotics are the result of serious inferential gaps. Electronic health records (EHR) had some success in mitigating the wrong site, wrong side, wrong procedure, wrong person (WSWP) errors, and the general medical errors; however, these errors continue to be quite significant. In the last few decades the disease demography has changed from quick onset infectious diseases to slow onset non-communicable diseases (NCD). This changed the healthcare sector in terms of both training and practice. In 2020 the COVID-19 pandemic disrupted the entire healthcare system further with change in focus from NCD back to quick onset infectious disease. During COVID-19 pandemic misinformation in social media increased. In addition, COVID-19 made virtual healthcare a preferred mode of patient-physician encounter. Virtual healthcare requires higher level of audit, accuracy, and technology reliance. All these events in medical practice widened the inferential gaps further. In this position paper, we propose an architecture of digital health combined with artificial intelligence that can mitigate these challenges and increase patient safety in the post-COVID healthcare delivery. We propose this architecture in conjunction with diseasomics, patholomics, resistomics, oncolomics, allergomics, and drugomics machine interpretable knowledge graphs that will minimize the inferential gaps. Unless we pay our attention to this critical issue immediately, medical ecosystem crisis that includes medical errors, caregiver shortage, misinformation, and the inferential gaps will become the second, if not the first leading cause of death by 2050.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris, Z.S., Wooding, S., Grant, J.: The answer is 17 years, what is the question: understanding time lags in translational re-search. J. R Soc. Med. 104(12), 510–520 (2011)

    Article  Google Scholar 

  2. Kohn, L.T., Corrigan, J.M., Donaldson, M.S. (ed.): To Err is Human: Building a Safer Health System. Institute of Medicine (US) Committee on Quality of Health Care in America Washington (DC), National Academies Press (US), (2000)

    Google Scholar 

  3. Makary, M.A., Daniel, M.: Medical error—the third leading cause of death in the US. BMJ 2016, 353. https://www.bmj.com/content/353/bmj.i2139 (2016)

  4. Atanasov, A.G., et al.: First, do no harm (gone wrong): total-scale analysis of medical errors scientific literature. Front. Public Health. 16(8), 558913 (2020). https://doi.org/10.3389/fpubh.2020.558913

    Article  Google Scholar 

  5. Non-Communicable Diseases. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases

  6. O’Neill, J.: Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. The Review on Antimicrobial Resistance (2014)

    Google Scholar 

  7. Talukder, A. K., Chakrabarti, P., Chaudhuri, B. N., Sethi, T., Lodha, R., Haas, R. E.: 2AI&7D Model of Resis-tomics to Counter the Accelerating Antibiotic Resistance and the Medical Climate Crisis. BDA2021, Springer LNCS (2021)

    Google Scholar 

  8. Webster, P.: Virtual health care in the era of COVID-19. The Lancet. WORLD REPORT| 395(10231), P1180–P1181 (2020)

    Google Scholar 

  9. Tanner, C., Gans, C., White, J., Nath, R., Poh, J.: Electronic health records and patient safety: co-occurrence of early ehr implementation with patient safety practices in primary care settings. Appl. Clin. Inform. 6(1), 136–147 (2015). https://doi.org/10.4338/ACI-2014-11-RA-0099

    Article  Google Scholar 

  10. Electronic Health Records. Patient safety Network. https://psnet.ahrq.gov/primer/electronic-health-records

  11. MetaMap2020. https://lhncbc.nlm.nih.gov/ii/tools/MetaMap.html

  12. Talukder, A.K., Majumdar, T., Heckemann, R.A.: Mechanistic metabolic model of cancer using DNA dosages (02/13/2019 06:15:43). SSRN: https://ssrn.com/abstract=3335080. https://doi.org/10.2139/ssrn.3335080 (2019)

  13. Talukder, A.K., Haas, R.E.: Oncolomics: digital twins & digital triplets in cancer care. In: Accepted for presentation at Computational Approaches for Cancer Workshop (CAFCW21), in conjunction with Super Computing Conference (SC21) (2021)

    Google Scholar 

  14. Talukder A.K., Haas, R.E.: AIoT: AI meets IoT and web in smart healthcare. In: 13th ACM Web Science Conference 2021 (WebSci ’21 Companion), June 21–25, 2021, Virtual Event, United Kingdom. ACM, New York, NY, USA, 7p (2021). https://doi.org/10.1145/3462741.3466650

  15. Ghosal, S., Das, D., Udutalapally, V., Talukder, A.K., Misra, S.: sHEMO: Smartphone spectroscopy for blood hemoglobin level monitoring in smart anemia-care. IEEE Sens. J. 21(6), 8520–8529 (2021). https://doi.org/10.1109/JSEN.2020.3044386

    Article  Google Scholar 

  16. Basu, R., Madarkal, M., Talukder, A.K.: Smartphone Mammography for Breast Cancer Screening of Disadvantaged & Conservative Population. BDA2021, Springer LNCS, (2021)

    Google Scholar 

  17. Bransford, J.D., Brown, A.I., Cocking, R.R. (eds.): How People Learn: Brain, Mind, Experience, and School. National Academy Press, Washington, D.C. (2000)

    Google Scholar 

  18. Talukder, A.K., Sanz, J.B., Samajpati, J.: ‘Precision health’: balancing reactive care and proactive care through the evidence based knowledge graph constructed from real-world electronic health records, disease trajectories, diseasome, and patholome. In: Bellatreche, L., Goyal, V., Fujita, H., Mondal, A., Reddy, P.K. (eds.) BDA 2020. LNCS, vol. 12581, pp. 113–133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66665-1_9

    Chapter  Google Scholar 

  19. Talukder, A.K., Schriml, L., Ghosh, A., Biswas, R., Chakrabarti, P., Haas, R.E.: Diseasomics: Actionable Machine Inter-pretable Disease Knowledge at the Point-of-Care. Under review (2021)

    Google Scholar 

  20. Drug-drug interaction Netwoirk. https://snap.stanford.edu/biodata/datasets/10001/10001-ChCh-Miner.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asoke K. Talukder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Talukder, A.K. (2021). Bridging the Inferential Gaps in Healthcare. In: Srirama, S.N., Lin, J.CW., Bhatnagar, R., Agarwal, S., Reddy, P.K. (eds) Big Data Analytics. BDA 2021. Lecture Notes in Computer Science(), vol 13147. Springer, Cham. https://doi.org/10.1007/978-3-030-93620-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93620-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93619-8

  • Online ISBN: 978-3-030-93620-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics