Skip to main content

A Survey of Stroke Image Analysis Techniques

  • Conference paper
  • First Online:
Advances of Science and Technology (ICAST 2021)

Abstract

Stroke is one of the instantaneously shocking and spiking cerebrovascular diseases having substantial residual effects. Image analysis techniques have the ability to diagnosing and providing proper treatment for stroke patients. To lighten the problem, various techniques of image analysis have been proposed. Thus, this survey intended to analyze these proposed image analysis approaches intending to thoroughly examine the state-of-the-art image analysis techniques. To prepare this survey, the systematic literature review method was employed. Based on the reviewed literature, several clinical and biological image datasets are found to be used in the process of stroke diagnosis. However, there are very few publicly accessible datasets are available currently. In this survey, each image analysis technique used for stroke image analysis processes is briefly discussed. Finally, open research challenges are identified that could be addressed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Songhee, C., Jungyoon, K., Jihye, L.: The use of deep learning to predict stroke patient mortality. Int. J. Environ. Res. Public Health 16(11), 1876 (2019). https://doi.org/10.3390/ijerph16111876

    Article  Google Scholar 

  2. Namale, G., Kinengyere, A., Ddumba, E., Seeley, J., Newton, R.: Risk factors for haemorrhagic & ischemic stroke in Sub-Saharan Africa. J. Trop. Med. 18, 1–11 (2018). https://doi.org/10.1155/2018/4650851

    Article  Google Scholar 

  3. Gebremariam, S.A., Yang, H.S.: Types, risk profiles, and outcomes of stroke patients in tertiary teaching hospital in northern Ethiopia. eNeurologicalSci 3(1), 41–47 (2016)

    Article  Google Scholar 

  4. Ralph, L.S., Kasner, E.S.: An updated definition of stroke for the 21st century: a statement for healthcare professionals from American Stroke Association. Stroke 44, 2064–2089 (2013). https://doi.org/10.1161/STR.0b013e318296aeca

    Article  Google Scholar 

  5. Kitchenham, B.: Procedures for Performing Systematic Reviews. Emp. Soft. Eng. Nat. ICT, Australia, NICTA Technical Report 0400011T.1 (2004)

    Google Scholar 

  6. Stephan, P., Jochen, B., Fiebach, D.: Acute stroke MRI: current status & future perspective. Neuroradiology 52, 189–201 (2010)

    Article  Google Scholar 

  7. Chalela, A.J., et al.: MRI and CT in emergency assessment of patients with suspected-acute stroke: a prospective comparison. HHS Public Access 369(9558), 293–298 (2007). https://doi.org/10.1016/S0140-6736(07)60151-2

    Article  Google Scholar 

  8. Napel, S.: Principles and techniques of 3D spiral CT angiography, pp. 167–82. Raven, New York (2005)

    Google Scholar 

  9. Dora, K., Nikoleta, I.: Modern imaging modalities in the assessment of acute stroke. Folia Med. 56(2), 81–87 (2014)

    Article  Google Scholar 

  10. Mokli, Y., Pfaff, J., dos Santos, D., Herweh, C., Nagel, S.: Computer-aided imaging analysis in acute ischemic stroke – background and clinical applications. Neurol. Res. Pract. 1(1) (2019). https://doi.org/10.1186/s42466-019-0028-y

  11. Cenek, M., Hu, M., York, G., Dahl, S.: Survey of image processing techniques for brain pathology diagnosis: challenges & opportunities. Front. Robot. AI 5 (2018). https://doi.org/10.3389/frobt.2018.00120

  12. Soni, N., Dhanota, D., Kumar, S., Jaiswal, A., Srivastava, A.: Perfusion MR imaging of enhancing brain tumors: comparison of arterial spin labeling technique with dynamic susceptibility contrast technique. Neurol. India 65(5), 1046 (2017). https://doi.org/10.4103/neuroindia.ni_871_16

    Article  Google Scholar 

  13. Prats-Montalban, J., de Juan, A., Ferrer, A.: Multivariate image analysis: a review with applications. Chemometr. Intell. Lab. 107, 1–23 (2011)

    Article  Google Scholar 

  14. Anjna, E., Rajandeep, K.: Review of image segmentation technique. Int. J. Adv. Res. Comput. Sci. 8, 36–39 (2017)

    Google Scholar 

  15. Dilpreet, K., Yadwinder, K.: Various image segmentation techniques: a review. Int. J. Comput. Sci. Mobile Comput. 3(5), 809–814 (2014)

    Google Scholar 

  16. Vairaprakash, G., Subbu, K.: Review on image segmentation techniques. Int. J. Sci. Mod. Eng. 1(8), 1–8 (2014)

    Google Scholar 

  17. Whited, B., Rossignac, J., Slabaugh, G., Fang, T., Unal, G.: Pearling: stroke segmentation with crusted pearl strings. Pattern Recognit. Image Anal. 19(2), 277–283 (2009). https://doi.org/10.1134/s1054661809020102

    Article  Google Scholar 

  18. Abdulrahman, A.: Segmentation of brain stroke image. Int. J. Adv. Res. Comput. Commun. Eng. 4, 375–378 (2015)

    Google Scholar 

  19. Homiera, K.: Feature selection from brain stroke CT images based on particle swarm optimization. Int. J. Adv. Stud. Comput. Sci. Eng. 5(1), 8–13 (2016)

    Google Scholar 

  20. Jayaram, P.V., Menaka, R.: An experimental study of Stockwell transform-based feature extraction method for ischemic stroke detection. Int. J. Biomed. Eng. Technol. 21(1), 40–48 (2016)

    Article  Google Scholar 

  21. Marbun, J.T., Seniman, U., Andayani, J.T.: Classification of stroke disease using convolutional neural network. J. Phys. Conf. Ser. 978, 012092 (2018). https://doi.org/10.1088/1742-6596/978/1/012092

    Article  Google Scholar 

  22. Mayank, C., Saurabh, S., Kishore, L.: A method for automatic-detection and classification of stroke from brain CT-images. In: 31st Annual International Conference of the IEEEEMBS Minneapolis, Minnesota, USA, September 2–6 (2009)

    Google Scholar 

  23. Saad, N.M., Abdullah, A.R., Muda, A.F., Musa, H.: Segmentation and classification analysis techniques for stroke based on diffusion weighted images. Int. J. Comput. Sci. 3(14), 1–8 (2018)

    Google Scholar 

  24. Lindenberg, R., Zhu, L., Rüber, T., Schlaug, G.: Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Hum. Brain Mapp. 33(5), 1040–1051 (2011). https://doi.org/10.1002/hbm.21266

    Article  Google Scholar 

  25. Heiss, W., Kidwell, C.: Imaging for prediction of functional outcome and assessment of recovery in ischemic stroke. Stroke 45(4), 1195–1201 (2014). https://doi.org/10.1161/strokeaha.113.003611

    Article  Google Scholar 

  26. Pinto, A., Mckinley, R., Alves, V., Wiest, R., Silva, C., Reyes, M.: Stroke lesion-outcome prediction based on MRI combined with clinical information. Front. Neurol. 9 (2018). https://doi.org/10.3389/fneur.2018.01060

  27. Rekik, I., Allassonniere, S., Carpenter, T., Wardlaw, J.: Medical image analysis methods in MR/CT imaged acute-subacute ischemic stroke lesion: segmentation, prediction and insights into dynamic evolution simulation models a critical appraisal. Neuro Image Clin. 1(1), 164–178 (2012). https://doi.org/10.1016/j.nicl.2012.10.003

    Article  Google Scholar 

  28. Subudhi, A., Dash, M., Sabut, S.: Automated segmentation and classification of brain stroke using expectation-maximization and random forest classifier. Biocybern. Biomed. Eng. 40(1), 277–289 (2020). https://doi.org/10.1016/j.bbe.2019.04.004

    Article  Google Scholar 

  29. Lemogoum, D., Degaute, J., Bovet, P.: Stroke – prevention, treatment, and rehabilitation in Sub-Saharan Africa. Am. J. Prev. Med. 29(5), 95–101 (2005). https://doi.org/10.1016/j.amepre.2005.07.025

    Article  Google Scholar 

  30. Government of Western Australia. Diagnostic Imaging Pathways – Stroke (2nd ed.). http://www.imagingpathways.health.wa.gov.au (2017)

  31. Audebert, H.J., Fiebach, J.B.: Brain imaging in acute ischemic stroke—MRI or CT? Curr. Neurol. Neurosci. Rep. 15(3), 1–6 (2015). https://doi.org/10.1007/s11910-015-0526-4

    Article  Google Scholar 

  32. Lee, E., Kim, Y., Kim, N., Kang, D.: Deep into the brain: artificial intelligence in stroke imaging. J. Stroke 19(3), 277–285 (2017). https://doi.org/10.5853/jos.2017.02054

    Article  Google Scholar 

  33. Brazzelli, M.: Magnetic resonance imaging versus computed tomography for detection of acute vascular-lesions in patients presenting with stroke symptoms (Review). Cochrane Database Syst. Rev. 4(4) (2009). Available: https://pubmed.ncbi.nlm.nih.gov/19821415/

  34. Carlos, M.: Deep learning IoT system for online stroke detection in skull-computed tomography images. J. Comput. Netw. 152(19), 25–39 (2019). https://doi.org/10.1016/j.comnet.2019.01.019

    Article  Google Scholar 

  35. Celine, R.: Automated delineation of stroke lesions using brain CT images. Neuro Image Clin. 4(14), 540–548 (2014). https://doi.org/10.1016/j.nicl.2014.03.009

    Article  Google Scholar 

  36. Robert, L., Lin, L., Gottfried, S.: Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Hum. Brain Mapp. 33(1), 1040–1051 (2011). https://doi.org/10.1002/hbm.21266

    Article  Google Scholar 

  37. Soni, N., Dhanota, D.P., Kumar, S., Jaiswal, A.K., Srivastava, A.K.: Perfusion MR-imaging of enhancing brain tumors: comparison of arterial spin labeling technique with dynamic susceptibility contrast technique. Neurol. India 65, 1046–1052 (2017). https://doi.org/10.4103/neuroindia.ni_871_16

    Article  Google Scholar 

  38. Harston, W.J., Minks, D., Sheerin, F., Payne, S.J., Chappell, M., Kennedy, J.: Optimizing image registration and infarct definition in stroke research. Ann. Clin. Transl. Neurol. 4(3), 166–174 (2017)

    Article  Google Scholar 

  39. Doyle, S., Forbes, F., Jaillard, A., Heck, O., Detante, O., Dojat, M.: Sub-acute and chronic ischemic stroke lesion MRI segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 111–122. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_10

    Chapter  Google Scholar 

  40. Sporns, P., et al.: Computed tomography perfusion improves diagnostic accuracy in acute posterior circulation stroke. Cerebrovasc. Dis. 41(5–6), 242–247 (2016). https://doi.org/10.1159/000443618

    Article  Google Scholar 

  41. Bastian, C., et al.: Influence of stroke infarct location on functional outcome measured by the modified Rankin scale. Stroke 45, 1695–1702 (2014). https://doi.org/10.1161/STROKEAHA.114.005152

    Article  Google Scholar 

  42. Liew, S., et al.: A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Sci. Data 5, 180011 (2018). https://doi.org/10.1038/sdata.2018.11

    Article  Google Scholar 

  43. Maier, O., Menze, B.H., Heinrich, P., Handles, H., Reyes, M.: ISLES 2015: a public evaluation benchmark for ischemic stroke lesion-segmentation from multispectral MRI. Med. Image Anal. 35, 250–269 (2017). https://doi.org/10.1016/j.media.2016.07.009

    Article  Google Scholar 

  44. Kidwell, C.S., Chalela, J.A., Saver, J.L.: Comparison of MRI and CT to detecting the acute intracerebral haemorrhage. JAMA 292(15), 1823–1830 (2004)

    Article  Google Scholar 

  45. Wardlaw, J.M., Keir, S.L., Seymour, J.: What is the best imaging strategy for acute stroke? Health Technol. Assess. 8, 1–180 (2004)

    Article  Google Scholar 

  46. Latchaw, R.E., Yonas, H., Hunter, G.J.: Guidelines and recommendations for perfusion-imaging in cerebral-ischemia: a scientific statement for healthcare professionals by the writing group on perfusion-imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke 34, 1084–1104 (2005)

    Article  Google Scholar 

  47. Adams, H.P., Adams, R.J., Brott, T.: The early management guidelines for patients with ischemic stroke. Stroke 34, 1056–1083 (2005)

    Article  Google Scholar 

  48. Madhu, L.: Prediction of stroke using deep learning model. Am. J. Neuroradiol. 3(8), 1–9 (2017). https://doi.org/10.1007/978-3-319-70139-478

    Article  Google Scholar 

  49. Steffanie, H., Benno, G., Corinne, B., Gemma, L., Marcoand, D., Arthur, L.: Automated morphologic analysis of microglia after stroke. Front. Cell. Neurol. 12(106), 1–11 (2018). https://doi.org/10.3389/fncel.2018.00106

    Article  Google Scholar 

  50. Arko, B.: Determining ischemic stroke from CTA imaging using symmetry sensitive convolutional networks. Researchgate, pp. 1–6 (2019). https://doi.org/10.1109/ISBI.2019.8759475

  51. Jakub, N., Michal, M., Michal, K.: Data augmentation for brain-tumor segmentation: a review. Front. Comput. Neurosci. 13(83), 1–18 (2019)

    Google Scholar 

  52. Forkert, N.D., Verleger, T., Cheng, B., Thomalla, G., Hilgetag, C.C., Fiehler, J.: Multiclass support vector machine-based lesion mapping predicts functional outcome in ischemic stroke patients. PLoS One 10(6), e0129569 (2015). https://doi.org/10.1371/journal.pone.0129569

    Article  Google Scholar 

  53. Li, X., Bian, D., Jinghui, Y., Li, M., Zhao, D.: Using machine learning models to improve stroke risk level classification methods of China national stroke screening. BMC Med. Inform. Decis. Mak. 19(261), 1–7 (2019)

    Google Scholar 

  54. Abulnaga, S., Rubin, J.: Ischemic Stroke Lesion Segmentation in CT Perfusion Scans Using Pyramid Pooling and Focal Loss. arXiv:1811.01085v1 [cs.CV] (2018)

  55. Dolz, J., Ben, I., Desrosiers, C.: Dense Multi Path U-Net for Ischemic Stroke Lesion Segmentation in Multiple Image Modalities. arXiv:1810.07003v1 [cs.CV] (2018)

  56. Sharique, M., Pundarikaksha, B., Sridar, P., Rama, K., Ramarathnam, K.: Parallel CapsuleNet for Ischemic Stroke Segmentation (2019). https://doi.org/10.1101/661132

  57. Öman, O., Mäkelä, T., Salli, E., Savolainen, S., Kangasniemi, M.: 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. Eur. Radiol. Exp. 3(1), 1–11 (2019). https://doi.org/10.1186/s41747-019-0085-6

    Article  Google Scholar 

  58. Wang, G., Song, T., Dong, Q., Cui, M., Huang, N., Zhang, S.: Automatic Ischemic Stroke Lesion Segmentation from Computed Tomography Perfusion Images by Image Synthesis and Attention Based Deep Neural Networks. arXiv:2007.03294v1 [eess.IV] (2020)

  59. Samak, A., Clatworthy, P., Mirmehdi, M.: Prediction of Thrombectomy Functional Outcomes using Multimodal Data. arXiv:2005.13061v2 [eess.IV] (2020)

  60. Rubin, J., Abulnaga, S.: CT-To-MR Conditional Generative Adversarial Networks for Ischemic Stroke Lesion Segmentation. arXiv:1904.13281v1 [eess.IV] (2019)

  61. Malla, P., Hernandez, C., Rachmadi, M., Komura, T.: Evaluation of enhanced learning techniques for segmenting ischemic stroke lesions in brain MRP images using a convolutional neural network scheme. Frontiers (2019). https://doi.org/10.1101/544858

  62. Zhang, L., et al.: Ischemic-stroke-lesion segmentation using multi-plane information fusion. IEEE Access 8, 45715–45725 (2020). https://doi.org/10.1109/ACCESS.2020.2977415

    Article  Google Scholar 

  63. Zhao, B., et al.: Automatic Acute Ischemic Stroke Lesion Segmentation Using Semi-Supervised Learning

    Google Scholar 

  64. Suberi, M., Zakaria, W., Tomari, R., Nazari, A., Mohd, H., Fuad, N.: Deep transfer learning application for automated ischemic classification in posterior fossa CT images. Int. J. Adv. Comput. Sci. Appl. 10(8), 459–465 (2019)

    Google Scholar 

  65. Liu, Z., Cao, C., Ding, S., Han, T., Wu, H., Liu, S.: Towards Clinical Diagnosis: Automated Stroke Lesion Segmentation on Multimodal MR Image Using Convolutional Neural Network. arXiv:1803.05848v1 [cs.CV] (2018)

  66. Henok, Y.A.: Adaptive learning expert system for diagnosis and management of viral hepatitis. Int. J. Artif. Intell. Appl. 10(2), 33–46 (2019). https://doi.org/10.5121/ijaia.2019.10204

    Article  Google Scholar 

  67. Stroke Diagnosis. https://www.nhs.uk/conditions/stroke/diagnosis/. Retrieved 19 May 2020

  68. Great Learning Team: Introduction to Image Pre-processing: What is Image Pre-processing? https://www.mygreatlearning.com/blog/author/greatlearning/ (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asrat Mulatu Beyene .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agizew, H.Y., Beyene, A.M. (2022). A Survey of Stroke Image Analysis Techniques. In: Berihun, M.L. (eds) Advances of Science and Technology. ICAST 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 411. Springer, Cham. https://doi.org/10.1007/978-3-030-93709-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93709-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93708-9

  • Online ISBN: 978-3-030-93709-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics