Skip to main content

An Unsupervised 3D Recurrent Neural Network for Slice Misalignment Correction in Cardiac MR Imaging

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 13131))

Abstract

Cardiac magnetic resonance (CMR) imaging is the most accurate imaging modality for cardiac function analysis. However respiration misalignment can negatively impact the accuracy of the cardiac wall 3D segmentation and the assessment of cardiac function. A learning based misalignment correction method is needed, in order to build an end-to-end accurate cardiac function analysis pipeline. To this end, we proposed an unsupervised misalignment correction network to solve this challenge problem. We validated the proposed framework on synthetic and real CMR segmented images, and the result prove the efficiency of misalignment correction and the improvement with the corrected CMR image. Experimental results using our approach show that it: 1) could more efficiently correct the misalignment of CMR images compared with the traditional optimization process. 2) incorporated an unsupervised loss named “intersection distance” loss to guide the network output to the accurate correction prediction. 3) is the first to use the unsupervised learning based method for Cardiac MR slices’ misalignment problem and achieved more accurate results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Biffi, C., et al.: 3D high-resolution cardiac segmentation reconstruction from 2D views using conditional variational autoencoders. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1643–1646. IEEE (2019)

    Google Scholar 

  2. Cavalcante, J.L., Lalude, O.O., Schoenhagen, P., Lerakis, S.: Cardiovascular magnetic resonance imaging for structural and valvular heart disease interventions. JACC: Cardiovasc. Interv. 9(5), 399–425 (2016)

    Google Scholar 

  3. Chandler, A.G., et al.: Correction of misaligned slices in multi-slice cardiovascular magnetic resonance using slice-to-volume registration. J. Cardiovasc. Magn. Reson. 10(1), 1–9 (2008)

    Article  Google Scholar 

  4. Fonseca, C.G., et al.: The cardiac atlas project-an imaging database for computational modeling and statistical atlases of the heart. Bioinformatics 27(16), 2288–2295 (2011)

    Article  Google Scholar 

  5. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  6. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  7. Lötjönen, J., Pollari, M., Kivistö, S., Lauerma, K.: Correction of movement artifacts from 4-D cardiac short- and long-axis MR data. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 405–412. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30136-3_50

    Chapter  Google Scholar 

  8. Metaxas, D.N., Yan, Z.: Chapter 12 - deformable models, sparsity and learning-based segmentation for cardiac MRI based analytics. In: Zhou, S.K., Rueckert, D., Fichtinger, G. (eds.) Handbook of Medical Image Computing and Computer Assisted Intervention, pp. 273–292. Academic Press (2020)

    Google Scholar 

  9. Moriyama, I.M., Krueger, D.E., Stamler, J.: Cardiovascular diseases in the United States, vol. 10. Harvard University Press (1971)

    Google Scholar 

  10. Pazos-López, P., et al.: Value of CMR for the differential diagnosis of cardiac masses. JACC: Cardiovasc. Imaging 7(9), 896–905 (2014)

    Google Scholar 

  11. Ruijsink, B., et al.: Fully automated, quality-controlled cardiac analysis from CMR: validation and large-scale application to characterize cardiac function. Cardiovasc. Imaging 13(3), 684–695 (2020)

    Google Scholar 

  12. Scheffler, K., Lehnhardt, S.: Principles and applications of balanced SSFP techniques. Eur. Radiol. 13(11), 2409–2418 (2003)

    Article  Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  14. Sinclair, M., Bai, W., Puyol-Antón, E., Oktay, O., Rueckert, D., King, A.P.: Fully automated segmentation-based respiratory motion correction of multiplanar cardiac magnetic resonance images for large-scale datasets. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 332–340. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_38

    Chapter  Google Scholar 

  15. Villard, B., Zacur, E., Dall’Armellina, E., Grau, V.: Correction of slice misalignment in multi-breath-hold cardiac MRI scans. In: Mansi, T., McLeod, K., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2016. LNCS, vol. 10124, pp. 30–38. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52718-5_4

    Chapter  Google Scholar 

  16. Wilkins, E., et al.: European cardiovascular disease statistics 2017 (2017)

    Google Scholar 

  17. Yang, D., Huang, Q., Mikael, K., Al’Aref, S., Axel, L., Metaxas, D.: MRI-based characterization of left ventricle dyssynchrony with correlation to CRT outcomes. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1–4. IEEE (2020)

    Google Scholar 

  18. Yang, D., Wu, P., Tan, C., Pohl, K.M., Axel, L., Metaxas, D.: 3D motion modeling and reconstruction of left ventricle wall in cardiac MRI. In: Pop, M., Wright, G.A. (eds.) FIMH 2017. LNCS, vol. 10263, pp. 481–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59448-4_46

    Chapter  Google Scholar 

  19. Zakkaroff, C., Radjenovic, A., Greenwood, J., Magee, D.: Stack alignment transform for misalignment correction in cardiac MR cine series. Technical report. Citeseer (2012)

    Google Scholar 

  20. Zhuang, X.: Challenges and methodologies of fully automatic whole heart segmentation: a review. J. Healthc. Eng. 4, 371–407 (2013)

    Article  Google Scholar 

  21. Zhuang, X., Shen, J.: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI. Med. Image Anal. 31, 77–87 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, Q. et al. (2022). An Unsupervised 3D Recurrent Neural Network for Slice Misalignment Correction in Cardiac MR Imaging. In: Puyol Antón, E., et al. Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge. STACOM 2021. Lecture Notes in Computer Science(), vol 13131. Springer, Cham. https://doi.org/10.1007/978-3-030-93722-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93722-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93721-8

  • Online ISBN: 978-3-030-93722-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics