Abstract
Computational modelling is becoming a crucial aid to better understand valve physiopathology. It allows experts to gain deeper insights on valve biomechanics and deformation, thus helping in the planning of therapies and assessing the efficacy of cardiovascular devices. However, there is a lack of proper visualization techniques to facilitate the interpretation of simulation results. In this work, Smoothed Particle Hydrodynamics (SPH) was used to model mitral valve regurgitation (MVR) and a common minimally-invasive intervention, an edge-to-edge repair. Furthermore, a flattening visualization of the mitral valve (MV) was implemented to ease the analysis of the obtained in-silico indices in different stages. The obtained results show the relevance of proper planning prior to the edge-to-edge repair procedure, improving the safety and efficacy of the devices, while decreasing the risk of re-intervention.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Apostolidou, E., et al.: Primary mitral valve regurgitation: update and review. Glob. Cardiol. Sci. Pract. 2017(1), e201703 (2017)
Del Forno, B., et al.: Mitral valve regurgitation: a disease with a wide spectrum of therapeutic options. Nat. Rev. Cardiol. 17, 807–827 (2020)
Lau, K.D., Díaz-Zuccarini, V., Scambler, P., Burriesci, G.: Fluid-structure interaction study of the edge-to-edge repair technique on the mitral valve. J. Biomech. 44(13), 2409–2417 (2011)
Avanzini, A.: A computational procedure for prediction of structural effects of edge-to-edge repair on mitral valve. J. Biomech. Eng. 130(3), 0301015 (2008)
Kong, F., Caballero, A., McKay, R., Sun, W.: Finite element analysis of MitraClip procedure on a patient-specific model with functional mitral regurgitation. J. Biomech. 104, 109730 (2020)
Zhang, L., Ademiloye, A., Liew, K.: Meshfree and particle methods in biomechanics: prospects and challenges. Arch. Comput. Meth. Eng. 26, 1547–1576 (2019)
Lluch, E., et al.: Breaking the state of the heart: meshless model for cardiac mechanics. Biomech. Model. Mechanobiol. 18(6), 1549–1561 (2019). https://doi.org/10.1007/s10237-019-01175-9
Hermida, U., Lluch, E., De Craene, M., Bijnens, B., Morales, H.G.: Aortic valve dynamic modelling with a meshless method. Congreso Anual de la Sociedad Española de Ingeniería Biomédica (2019)
Ros, J., Camara, O., Hermida, U., Bijnens, B., Morales, H.G.: Towards mesh-free patient-specific mitral valve modeling. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 66–75. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_7
Wang, J., Chan, D.: Frictional contact algorithms in SPH for the simulation of soil-structure interaction. Int. J. Numer. Anal. Meth. Geomech. 38(7), 747–770 (2014)
Seo, S., Min, O.: Axisymmetric SPH simulation of elasto-plastic contact in the low velocity impact. Comput. Phys. Commun. 175, 583–603 (2006)
Tautz, L., Vellguth, K., Sündermann, S., Degener, F., Wamala, I.: CT segmented mitral valves in open state. Zenodo (2019)
Hisham, M., Mohd, H.: Degenerative vs rigidity on mitral valve leaflet using fluid structure interaction (FSI) model. J. Biomim. Biomater. Biomed. Eng. 26, 60–65 (2016)
Sanfilippo, A., et al.: Papillary muscle traction in mitral valve prolapse: quantitation by two-dimensional echocardiography. J. Am. Coll. Cardiol. 19(3), 564–571 (1992)
Kaiser, A., McQueen, D., Peskin, C.: modelling the mitral valve. Int. J. Numer. Meth. Biomed. Eng. 35(11), e3240 (2019)
Rim, Y., Laing, S., Kee, P., McPherson, D., Kim, H.: Evaluation of mitral valve dynamics. JACC: Imaging 6(2), 263–268 (2013)
Caballero, A., et al.: New insights into mitral heart valve prolapse after chordae rupture through fluid-structure interaction computational modelling. Sci. Rep. 8, 17306 (2018)
Lichtenberg, N., et al.: Mitral valve flattening and parameter mapping for patient-specific valve diagnosis. Int. J. Comput. Assist. Radiol. Surg. 15(4), 617–627 (2020). https://doi.org/10.1007/s11548-019-02114-w
Zhang, Y., et al.: Mechanical effects of MitraClip on leaflet stress and myocardial strain in functional mitral regurgitation - a finite element modelling study. PLoS ONE 14(10), e0223472 (2019)
Caballero, A., Mao, W., McKay, R., Hahn, R., Sun, W.: A comprehensive engineering analysis of left heart dynamics after MitraClip in a functional mitral regurgitation patient. Front. Physiol. 11, 430 (2020)
Kamakoti, R., Dabiri, Y., Wang, D., Guccione, J., Kassab, G.: Numerical simulations of MitraClip placement: clinical implications. Sci. Rep. 9, 15823 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Casademunt, P., Camara, O., Bijnens, B., Lluch, È., Morales, H.G. (2022). Valve Flattening with Functional Biomarkers for the Assessment of Mitral Valve Repair. In: Puyol Antón, E., et al. Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge. STACOM 2021. Lecture Notes in Computer Science(), vol 13131. Springer, Cham. https://doi.org/10.1007/978-3-030-93722-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-93722-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93721-8
Online ISBN: 978-3-030-93722-5
eBook Packages: Computer ScienceComputer Science (R0)