Abstract
Assessing the structure and function of the right ventricle (RV) is important in the diagnosis of several cardiac pathologies. However, it remains more challenging to segment the RV than the left ventricle (LV). In this paper, we focus on segmenting the RV in both short (SA) and long-axis (LA) cardiac MR images simultaneously. For this task, we propose a new multi-input/output architecture, hybrid 2D/3D geometric spatial TransformEr Multi-Pass fEature pyRAmid (Tempera). Our feature pyramid extends current designs by allowing not only a multi-scale feature output but multi-scale SA and LA input images as well. Tempera transfers learned features between SA and LA images via layer weight sharing and incorporates a geometric target transformer to map the predicted SA segmentation to LA space. Our model achieves an average Dice score of 0.836 and 0.798 for the SA and LA, respectively, and 26.31 mm and 31.19 mm Hausdorff distances. This opens up the potential for the incorporation of RV segmentation models into clinical workflows.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Attili, A., Schuster, A., Nagel, E., et al.: Quantification in cardiac MRI: advances in image acquisition and processing. Int. J. Cardiovasc. Imaging 26(Suppl. 1), 27–40 (2010). https://doi.org/10.1007/s10554-009-9571-x
Balakrishnan, G., Zhao, A., Sabuncu, M.R., et al.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)
Bonnemains, L., Mandry, D., Marie, P., et al.: Assessment of right ventricle volumes and function by cardiac MRI: quantification of the regional and global interobserver variability. Magn. Reson. Med. 67, 1740–1746 (2012)
Campello, V.M., Gkontra, P., Izquierdo, C., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M&Ms challenge. IEEE Trans. Med. Imaging 40(12), 3543–3554 (2021). https://doi.org/10.1109/TMI.2021.3090082
Caudron, J., Fares, J., Vivier, P., et al.: Diagnostic accuracy and variability of three semi-quantitative methods for assessing right ventricular systolic function from cardiac mri in patients with acquired heart disease. Eur. Radiol. 21, 2111–2120 (2011)
Caudron, J., Fares, J., Lefebvre, V., et al.: Cardiac MR assessment of right ventricular function in acquired heart disease: factors of variability. Acad Radiol. 19(8), 991–1002 (2012)
Chen, C., Biffi, C., Tarroni, G., Petersen, S., Bai, W., Rueckert, D.: Learning shape priors for robust cardiac MR segmentation from multi-view images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 523–531. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_58
Friedberg, M., Redington, A.: Right versus left ventricular failure differences, similarities, and interactions. Circulation 129, 1033–1044 (2014)
Full, P.M., Isensee, F., Jäger, P.F., Maier-Hein, K.: Studying robustness of semantic segmentation under domain shift in cardiac MRI. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 238–249. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_24
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018) https://doi.org/10.1109/CVPR.2018.00745
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)
Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: 31st International Conference on Neural Information Processing Systems, pp. 972–981. NIPS 2017. Curran Associates Inc. (2017)
LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_3
Lin, T.Y., Dollár, P., Girshick, R., et al.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2017). https://doi.org/10.1109/CVPR.2017.106
Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection (2018)
Martín-Isla, C., Palomares, J.F.R., Guala, A., et al.: Multi-disease, multi-view & multi-center right ventricular segmentation in cardiac MRI (M&Ms-2), March 2021. https://doi.org/10.5281/zenodo.4573984
Petitjean, C., Zuluaga, M.A., Bai, W., et al.: Right ventricle segmentation from cardiac MRI: a collation study. Med. Image Anal. 19(1), 187–202 (2015)
Zhu, W., Huang, Y., Zeng, L., et al.: AnatomyNet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med. Phys. 46(2), 576–589 (2019)
Acknowledgements
This work was supported by the UKRI CDT in AI for Healthcare http://ai4health.io (Grant No. EP/S023283/1) and the British Heart Foundation Centre of Research Excellence at Imperial College London (RE/18/4/34215).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Galazis, C., Wu, H., Li, Z., Petri, C., Bharath, A., Varela, M. (2022). Tempera: Spatial Transformer Feature Pyramid Network for Cardiac MRI Segmentation. In: Puyol Antón, E., et al. Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge. STACOM 2021. Lecture Notes in Computer Science(), vol 13131. Springer, Cham. https://doi.org/10.1007/978-3-030-93722-5_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-93722-5_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93721-8
Online ISBN: 978-3-030-93722-5
eBook Packages: Computer ScienceComputer Science (R0)