Skip to main content

Towards Precomputed 1D-Convolutional Layers for Embedded FPGAs

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2021)

Abstract

We present a new type of 1D-convolutional block allowing us to precompute large parts of a 1D-CNN. The block combines quantization with depthwise-separable convolutions to reduce the overhead for precomputation, making the approach feasible. We present two proof of concept architectures and evaluate them on a Xilinx Spartan-7 S15 low power embedded FPGA. This way we are able to detect atrial fibrillation from 42 s ECG samples. Classifying a sample takes us 0.052 ms, while consuming 0.004 mJ of energy. The networks achieve a classification accuracy of 82.37% and 94.22% respectively. The implementations do not use any block RAM or DSP slices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chollet, F.: Xception: deep learning with depthwise separable convolutions (2017)

    Google Scholar 

  2. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: training deep neural networks with weights and activations constrained to +1 or \(-\)1 (2016)

    Google Scholar 

  3. Ghasemzadeh, M., Samragh, M., Koushanfar, F.: ReBNet: residual binarized neural network. arXiv:1711.01243 (2018)

  4. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  5. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 (2017)

  6. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR, abs/1502.03167 (2015). http://arxiv.org/abs/1502.03167

  7. Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., Inman, D.J.: 1D convolutional neural networks and applications: a survey. arXiv:1905.03554 (2019)

  8. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001). https://doi.org/10.1109/51.932724

    Article  Google Scholar 

  9. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. arXiv:1603.05279 (2016)

  10. Schiele, G., Burger, A., Cichiwskyj, C.: The elastic node: an experimentation platform for hardware accelerator research in the Internet of Things. In: 2019 IEEE International Conference on Autonomic Computing (ICAC), pp. 84–94 (2019). https://doi.org/10.1109/ICAC.2019.00020

  11. Sifre, L.: Rigid-motion scattering for image classification. Ph.D. thesis, Ecole Polytechnique, CMAP, October 2014

    Google Scholar 

  12. Umuroglu, Y., et al.: FINN. In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, February 2017. https://doi.org/10.1145/3020078.3021744. http://dx.doi.org/10.1145/3020078.3021744

  13. Umuroglu, Y., Akhauri, Y., Fraser, N.J., Blott, M.: LogicNets: co-designed neural networks and circuits for extreme-throughput applications. In: 2020 30th International Conference on Field-Programmable Logic and Applications (FPL), pp. 291–297. IEEE (2020)

    Google Scholar 

  14. Wang, E., Davis, J.J., Cheung, P.Y.K., Constantinides, G.A.: LUTNet: learning FPGA configurations for highly efficient neural network inference. arXiv: 1910.12625 (2020)

Download references

Acknowledgements

The authors acknowledge the financial support by the Federal Ministry of Education and Research of Germany in the KI-Sprung LUTNet project (project number 16ES1125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Einhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Einhaus, L., Qian, C., Ringhofer, C., Schiele, G. (2021). Towards Precomputed 1D-Convolutional Layers for Embedded FPGAs. In: Kamp, M., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2021. Communications in Computer and Information Science, vol 1524. Springer, Cham. https://doi.org/10.1007/978-3-030-93736-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93736-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93735-5

  • Online ISBN: 978-3-030-93736-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics