Skip to main content

Neuro-Symbolic Architecture for Experiential Learning in Discrete and Functional Environments

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13154))

Included in the following conference series:

Abstract

The paper presents a “horizontal neuro-symbolic integration” approach for artificial general intelligence along with elementary representation-agnostic cognitive architecture and explores its usability under the experiential learning framework for reinforcement learning problem powered by “global feedback”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsamoura, E., Michael, L.: Neural-Symbolic Integration: A Compositional Perspective (2020). arXiv:2010.11926 [cs.AI]. https://arxiv.org/abs/2010.11926

  2. Garcez, A., et al.: Neural-Symbolic Computing: An Effective Methodology for Principled Integration of Machine Learning and Reasoning (2019). arXiv:1905.06088 [cs.AI]

  3. Silver, D., et al.: Reward is Enough. Artificial Intelligence, vol. 299 (October 2021). https://doi.org/10.1016/j.artint.2021.103535

  4. Francois-Lavet, V., et al.: An Introduction to Deep Reinforcement Learning (2018). arXiv:1811.12560 [cs.LG]. https://arxiv.org/abs/1811.12560

  5. Moreira, I., et al.: Deep Reinforcement Learning with Interactive Feedback in a Human-Robot Environment (2020). arXiv:2007.03363 [cs.AI]. https://arxiv.org/abs/2007.03363

  6. Mnih, V., et al.: Playing Atari with Deep Reinforcement Learning (2013). arXiv:1312.5602 [cs.LG]. https://arxiv.org/abs/1312.5602

  7. Kahneman, D.: Thinking, Fast and Slow. Farrar Straus & Giroux, January 1, 1994 (1994)

    Google Scholar 

  8. Marcus, G.: The Next Decade in AI: Four Steps Towards Robust Artificial Intelligence (2020). arXiv:2002.06177 [cs.AI]. https://arxiv.org/abs/2002.06177v1

  9. Mostafa, H., et al.: Deep Supervised Learning Using Local Errors (2017). arXiv:1711.06756 [cs.NE]. https://arxiv.org/abs/1711.06756

  10. Lindsey, J., Ashok Litwin-Kumar, A.: Learning to Learn with Feedback and Local Plasticity (2020). arXiv:2006.09549 [cs.NE]. https://arxiv.org/abs/2006.09549

  11. Ciszak, M., et al.: Emergent Excitability in Adaptive Networks of Non-Excitable Units (2020). arXiv:2010.06249 [nlin.AO]. https://arxiv.org/abs/2010.06249

  12. Aljaberi, S., et al.: Global and Local Synaptic Regulation Determine the Stability of Homeostatic Plasticity (2021). arXiv:2103.15001 [nlin.AO]. https://arxiv.org/abs/2103.15001

  13. Noh, K., et al.: Impaired coupling of local and global functional feedbacks underlies abnormal synchronization and negative symptoms of schizophrenia. BMC Syst. Biol. 7(1), 30 (2013). https://doi.org/10.1186/1752-0509-7-30

    Article  Google Scholar 

  14. Kolb, A., Kolb, D.: Experiential learning theory. In: Encyclopedia of the Sciences of Learning, pp. 1212−1219. Springer, Boston (2012). https://doi.org/10.1007/978-1-4419-1428-6_227

  15. Zbontar, J., et al.: Barlow Twins: Self-Supervised Learning via Redundancy Reduction (2021). arXiv:2103.03230 [cs.CV]. https://arxiv.org/abs/2103.03230

  16. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2019). https://doi.org/10.1016/j.inffus.2019.12.012

  17. Rudin, C., et al.: Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges (2021). arXiv:2103.11251 [cs.LG]. https://arxiv.org/abs/2103.11251

  18. Vityaev, E.: Semantic Probabilistic Inference of Predictions. In: Series «Mathematics», vol. 21 (2017). https://doi.org/10.26516/1997-7670.2017.21.33

  19. Kolonin, A.: Controlled Language and Baby Turing Test for General Conversational Intelligence (2020). arXiv:2005.09280 [cs.AI]. https://arxiv.org/abs/2005.09280

  20. Vityaev, E.E., Demin, A.V., Kolonin, Y.A.: Logical probabilistic biologically inspired cognitive architecture. In: Goertzel, B., Panov, A.I., Potapov, A., Yampolskiy, R. (eds.) AGI 2020. LNCS (LNAI), vol. 12177, pp. 337–346. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52152-3_36

    Chapter  Google Scholar 

  21. Kolonin, A.: Computable cognitive model based on social evidence and restricted by resources: applications for personalized search and social media in multi-agent environments. In: 2015 International Conference on Biomedical Engineering and Computational Technologies (2015). https://ieeexplore.ieee.org/document/7361869?arnumber=7361869

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kolonin, A. (2022). Neuro-Symbolic Architecture for Experiential Learning in Discrete and Functional Environments. In: Goertzel, B., Iklé, M., Potapov, A. (eds) Artificial General Intelligence. AGI 2021. Lecture Notes in Computer Science(), vol 13154. Springer, Cham. https://doi.org/10.1007/978-3-030-93758-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93758-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93757-7

  • Online ISBN: 978-3-030-93758-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics