Skip to main content

Object Detection with Semi-supervised Adversarial Domain Adaptation for Real-Time Edge Devices

  • Conference paper
  • First Online:
Artificial Intelligence and Machine Learning (BNAIC/Benelearn 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1530))

Included in the following conference series:

  • 705 Accesses

Abstract

Object detection on real-time edge devices for new applications with no or a limited amount of annotated labels is difficult. Where traditional data-hungry methods fail, transfer learning can provide a solution by transferring knowledge from a source domain to the target application domain. We explore domain adaptation techniques on a one-stage detection architecture, i.e. YOLOv3, which enables use on edge devices. Existing methods in domain adaptation with deep learning for object detection, use two-stage detectors like Faster-RCNN with adversarial adaptation. By using a one-stage detector, the speed increases by a factor of eight. With our proposed method, we reduce by \(28\%\) the changes in performance introduced by the gap between the source and target domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008). https://doi.org/10.1016/j.cviu.2007.09.014, https://www.sciencedirect.com/science/article/pii/S1077314207001555

  2. Bole, A., Wall, A., Norris, A.: Chapter 1 - basic radar principles. In: Bole, A., Wall, A., Norris, A. (eds.) Radar and ARPA Manual, 3rd edn., pp. 1–28. Butterworth-Heinemann, Oxford (2014). https://doi.org/10.1016/B978-0-08-097752-2.00001-5, https://www.sciencedirect.com/science/article/pii/B9780080977522000015

  3. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster r-CNN for object detection in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  4. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  5. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR2005). vol. 1, pp. 886–893 (2005). https://doi.org/10.1109/CVPR.2005.177

  6. French, G., Mackiewicz, M., Fisher, M.H.: Self-ensembling for domain adaptation. CoRR abs/1706.05208 (2017), http://arxiv.org/abs/1706.05208

  7. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  9. Hsu, H.K., et al.: Progressive domain adaptation for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019

    Google Scholar 

  10. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  11. Khirodkar, R., Yoo, D., Kitani, K.: Domain randomization for scene-specific car detection and pose estimation. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1932–1940 (2019). https://doi.org/10.1109/WACV.2019.00210

  12. Kim, T., Jeong, M., Kim, S., Choi, S., Kim, C.: Diversify and match: a domain adaptive representation learning paradigm for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  14. Kuznetsova, A., et al.: The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale. Int. J. Comput. Vis. 28, 1956–1981 (2020)

    Google Scholar 

  15. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Google Scholar 

  16. Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid object detection. In: Proceedings of the International Conference on Image Processing, vol. 1, p. I (2002). https://doi.org/10.1109/ICIP.2002.1038171

  17. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  18. Lin, T.Y., et al.: Microsoft coco: Common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision - ECCV 2014, pp. 740–755. Springer International Publishing, Cham (2014)

    Google Scholar 

  19. Liu, W.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  20. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  21. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  22. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. CoRR abs/1804.02767 (2018), http://arxiv.org/abs/1804.02767

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Syst. pp. 91–99 (2015)

    Google Scholar 

  24. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to sift or surf. In: 2011 International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  25. Saito, K., Ushiku, Y., Harada, T., Saenko, K.: Strong-weak distribution alignment for adaptive object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  26. Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vis. 126(9), 973–992 (2018)

    Article  Google Scholar 

  27. Shao, Z., Wu, W., Wang, Z., Du, W., Li, C.: Seaships: a large-scale precisely annotated dataset for ship detection. IEEE Trans. Multimedia 20(10), 2593–2604 (2018)

    Article  Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  29. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. CoRR abs/1702.05464 (2017), http://arxiv.org/abs/1702.05464

  30. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intelli. Neurosci. 2018 (2018)

    Google Scholar 

  31. Wu, B., Iandola, F., Jin, P.H., Keutzer, K.: Squeezedet: unified, small, low power fully convolutional neural networks for real-time object detection for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, July 2017

    Google Scholar 

  32. Zhang, J., et al.: Vr-goggles for robots: real-to-sim domain adaptation for visual control. IEEE Robot. Autom. Lett. 4(2), 1148–1155 (2019). https://doi.org/10.1109/LRA.2019.2894216

    Article  Google Scholar 

  33. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  34. Zhu, X., Pang, J., Yang, C., Shi, J., Lin, D.: Adapting object detectors via selective cross-domain alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattias Billast .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Billast, M., De Schepper, T., Mets, K., Hellinckx, P., Oramas, J., Latré, S. (2022). Object Detection with Semi-supervised Adversarial Domain Adaptation for Real-Time Edge Devices. In: Leiva, L.A., Pruski, C., Markovich, R., Najjar, A., Schommer, C. (eds) Artificial Intelligence and Machine Learning. BNAIC/Benelearn 2021. Communications in Computer and Information Science, vol 1530. Springer, Cham. https://doi.org/10.1007/978-3-030-93842-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93842-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93841-3

  • Online ISBN: 978-3-030-93842-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics