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Abstract. In recent years a lot of research was conducted within the
area of causal inference and causal learning. Many methods were devel-
oped to identify the cause-effect pairs. These methods also proved their
ability to successfully determine the direction of causal relationships from
observational real-world data. Yet in bivariate situations, causal discov-
ery problems remain challenging. A class of methods, that also allows
tackling the bivariate case, is based on Additive Noise Models (ANMs).
Unfortunately, one aspect of these methods has not received much at-
tention until now: what is the impact of different noise levels on the
ability of these methods to identify the direction of the causal relation-
ship? This work aims to bridge this gap with the help of an empirical
study. We consider a bivariate case and two specific methods Regression
with Subsequent Independence Test and Identification using Conditional
Variances. We perform a set of experiments with an exhaustive range
of ANMs where the additive noises’ levels gradually change from 1% to
10000% of the causes’ noise level (the latter remains fixed). Additionally,
we consider several different types of distributions as well as linear and
non-linear ANMs. The results of the experiments show that these causal
discovery methods can fail to capture the true causal direction for some
levels of noise.
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1 Introduction

Thanks to the technological and computational advances during the last decades,
scientists were able to tackle successfully non-trivial problems from different re-
search areas, with causality being a prominent example. One of the fundamental
problems of causality theory is to determine the causal relationship between two
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or more variables. This problem is known as causal discovery, causal identifica-
tion or structure learning [8, 27]. For example, given altitude and temperature,
we want to answer the question if the temperature has an effect on altitude, or if
altitude has an effect on temperature. This is of particular interest since if such
a causal relationship is known then one can predict the effects on a system in
case of an intervention or a perturbation.

Controlled experimentation, or A/B tests, are considered to be a golden
standard for causal discovery [11, 34]. In such experiments, there are two identical
groups with only one variation. The only variable that is varied (intervened on)
is the potential cause. This procedure allows estimating the causal effect of this
variable in a given system. A/B tests are widely used in practical applications.
For example, testing the efficacy of medications is usually done with A/B tests,
see [32] for an example. In this case, the first group, also known as control
group, receives no medication or a placebo, and the second group, known as
intervention group, receives the real medication. The results show the true effect
(if any) of the medication on human health. However, such tests are often too
expensive, unethical, or even technically impossible to execute. For example, to
test the effect of smoking on health with this approach, one needs two non-
smoker groups. Next, the members of one group should be forced to smoke,
and the others not do so. Therefore, it is of great interest to determine causal
relationships from observational data only.

There exist many methods which are able to determine causal relationships
from observational data. One particular group of such methods is based on Ad-
ditive Noise Models (ANMs). These methods, as the name suggests, exploit the
additivity of the random hidden noise. ANMs received a lot of attention as they
are well established and yielded many good results [12]. Despite all the research
in the past years, one small but nonetheless important aspect of causal discovery
with ANMs has not received much attention: how do different noise levels of the
additive noise impact the correctness of these methods? In the real world, it can
occur that noise levels change drastically from cause to effect. It can happen,
for example, if the data collection process has a lot of interference like in outer
space.

In this work, we aim to bridge this research gap with an empirical study.
For our analysis, we selected two specific methods: Regression with Subsequent
Independence Test (Resit) [20] and Identification using Conditional Variances
(Uncertainty Scoring) [17]. We chose Resit, as it is known to produce reliable
results [15]. However, this method is not capable to identify the correct causal
direction in the case both the cause and the noise are Gaussian. In fact, this case
was only recently successfully tackled by the Uncertainty Scoring method. That
is why we chose the latter one as well. We perform a set of experiments with
an exhaustive range of ANMs where the additive noises’ levels gradually change
from 1% to 10000% of the causes’ noise level (the latter remains fixed). We also
consider several types of distributions as well as linear and non-linear data. The
results of the experiments show that these causal discovery methods can fail to
capture the true causal direction for some levels of noise.
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This paper is organized as follows. In Section 2 we introduce related work.
Next, in Section 3 we describe the chosen causal discovery methods. In Section 4
and Section 5 we discuss the experimental setup and the experimental results
respectively. Lastly, in Section 6 we draw conclusions and present possible future
work.

2 Related Work

Structure learning is the procedure of determining causal relationship directions
from observational data only and representing these as a (causal) graph. The
basic idea emerged from [33] as path analysis.

Judea Pearl presented in his work [8] a comprehensive theory of causality
and unified the probabilistic, manipulative, counterfactual, and structural ap-
proaches to causation. From this work we have the following key point. If there
is a statistical association, e.g. two variables X and Y are dependent, then one
of the following is true: 1) there is a causal relationship, either X has an effect
on Y or Y has an effect on X; 2) there is a common cause (confounder) that has
an effect on both X and Y'; 3) there is a possibly unobserved common effect of X
and Y that is conditioned upon data acquisition (selection bias); or 4) there can
be a combination of these. From there on, a lot of research has been conducted to
develop theoretical approaches and methods for structure learning. In the rest of
this section, we first introduce the common concept behind all these approaches,
and then we present some major works related to additive noise models.

In general, all methods for structure learning exploit the complexity of the
marginal and conditional probability distributions in some way, see [1-7, 9, 13,
14, 16, 18-25, 27-30, 35]. Under certain assumptions, these methods are then able
to solve the task of causal discovery. Let C denote the cause and E the effect.
Then their joint density can be expressed with pc g(c,e). This joint density
can be factorized into either (1) pc(c) - Prjc(ele) or (2) pr(e) - Poig(cle). The
idea is then that (1) gives models of lower total complexity than (2) and this
allows us to conclude the causal relationship direction. Intuitively, this makes
sense, because the effect contains information from the cause but not vice-versa
(of course, under the assumption that there are no cycles aka feedback loops).
Therefore, (2) has at least as much complexity as (1). However, the definition
of complexity is ambiguous. For example, one can say that “pc contains no
information about Pg|c(e|c)” and then draw partial conclusions about the causal
direction in a given system. This complexity question is often colloquially referred
to as breaking the symmetry, that is pc(c) - Pgjc(elc) # pe(e) - Poje(cle).

As it was already mentioned, causal discovery based on ANMs was widely
studied in the research literature. Silva et al. introduced in [26] a method for
learning the structure of linear latent variable models. The main assumption in
their work is that each variable is a linear function of its parents plus an ad-
ditive error term of positive finite variance. Hoyer et al. generalized the linear
framework of additive noise models to the nonlinear case [4]. Earlier works of-
ten assumed linear models for continuous variables. The authors showed that if
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data contains non-Gaussian variables, then this can help in distinguishing the
causal directions and identifying the causal graph. Mooij et al. introduced Resit!
method in [13]. This method is based on the idea of minimizing the statistical
dependence between the regressors and residuals?. The authors demonstrated
that if the residuals are no longer dependent on the input, then regression can
successfully model the causal dependence. This method does not need to assume
a particular distribution of the noise because any form of regression can be used
(e.g., Linear Regression), and it is well suited for the task of causal inference
in additive noise models. Next, Mooij et al. introduced a method to determine
the causal relationship in cyclic additive noise models and showed that such
models are generally identifiable in the bivariate, Gaussian-noise case [14]. Their
method works for continuous data and can be seen as a special case of nonlinear
independent component analysis. Later, Peters and Biithlmann proved in [19] full
identifiability® of linear Gaussian structural equation models if all the noise vari-
ables have the same variance. In the next work, Peters et at. proposed a method
that can identify the directed acyclic graph from the distribution under mild
conditions [20]. In contrast, previous methods assumed faithfulness and could
only identify the Markov equivalence class of the graph*. Finally, the authors
of [1, 18] proved that linear Gaussian models with different error variance can
be also identifiable. In their method, referred to as Uncertainty Scoring®, this is
done by ordering variables according to the law of total variances and then per-
forming independence tests between them. Park extended this result to additive
noise models in [17].

As we can see, many researchers contributed to the development of ANMs-
based causal discovery methods and widened our understanding of their appli-
cation cases. However, no previous research work analyzed how the level of noise
variance relative to that of the cause variance can impact the accuracy of these
methods. This question forms the basis of the current study.

3 Causal Discovery Methods

In this section, we introduce notations and then describe to two analyzed causal
discovery methods: Regression with Subsequent Independence Test (Resit) [20],
see Section 3.2, and Identification using Conditional Variances (Uncertainty
Scoring) [17], see Section 3.3.

! Resit method is described in Section 3.2.

2 The residuals are defined as the difference between the actual output and the pre-
dicted output.

3 Full identifiability means that not only the skeleton of the causal graph is recoverable
but also the arrows are.

4 Markov equivalence class refers to the class of graphs in which all graphs have the
same skeleton.

5 Uncertainty Scoring method is described in Section 3.3.
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3.1 Notations

In the following text, we give a short definition of additive noise models for the
bivariate case. For more details and multivariate cases, please refer to [4, 20].

Let X,Y € R be the cause and the effect respectively. Let there also be m
latent (hidden) causes U = (Uy,...,U,) € R™. Then the causal relationship
can be modeled as follows.

{§ J_Lf((]X’ Uy eee s Un) , with X ~ px(x) and U ~ py(ug, -+ ,tm),
where f : R x R™ — R is a linear or nonlinear function, and px(z) and
pu(u1, -+ ,uy) are the joint densities of the observed cause X and the latent
causes U. We assume that there is no confounding, no selection bias, and no
feedback loops between X and Y. In this case, X and U are independent, which
is denoted by X 1L U. Since the latent causes U are unobserved, their influence
can be summarized with a single noise variable N, € R, and the model can be
rewritten as follows:

Y= f(X7 Ny) :
' , with X ~ z) and N, ~ Ny ).
{vay px(x) and N, ~ py, (n,)

In our experiments, we are considering both linear and nonlinear additive
noise models:

Y = BX + N, with 8 € R, for the linear case

and
Y =X+ N, with 8,a € R, for the nonlinear case.

Also, X and N, can be drawn from one of the following three distributions: the
normal distribution denoted by the calligraphic letter A, the uniform distribu-
tion denoted by the calligraphic letter ¢, or the Laplace distribution denoted by
the calligraphic letter £. For example, throughout this work “X is drawn from a
normal distribution” is denoted by X ~ N or X ~ N (u,,0,) with u, standing
for the mean and o, for the standard deviation.

3.2 Regression with Subsequent Independence Test (Resit)

We implement Resit following Algorithm 1 from [15]. This algorithm requires
the following inputs: X and Y, a regression method, and a score estimator C:
RY x RV — R; it outputs dir (casual relationship direction). The idea is to
regress Y on X, predict )A/, and then calculate residuals Y,.s = Y —Y. Yies
and X are then used to calculate C‘X%y, a score for the assumed case X — Y.
Similarly, to test the other causal direction (Y — X), we regress X on Y,
calculate residuals X,..; = X — X and estimate CA'Y% x. In our experiments, the
generated data always follows X — Y. This verifies the assumption that only
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Algorithm 1 General procedure to decide whether p(z,y) satisfies Additive
Noise Model X - Y or Y — X.
Input:
- Li.d. sample data X and Y
- Regression method
- Score estimator €' : RY x RY — R
Output:
- dir

1:  regi < Regress Y on X
2: regz < Regress X on Y

3: Yies « regipredict(X) — Y
4 Xyes < rega.predict(Y) — X

5: C:’X%Y A @(Xa Yres)
6: Cyx < C(Y7 Xres)

XY ifCxoy <Cyox,
return dir=<Y — X if CA’XHY > CA'ny7 (1)
? if CA'X_>Y = éY—»X~

one direction in our data is correct (and not both). Under this assumption, we
can compare both scores directly to decide on the cause-effect direction, and we
do not need to determine the value of « for the independence tests, see Eq. (1).
Additionally, we can also use entropy estimators to estimate the score C.

In Algorithm 1, it is possible to split the data into training and test parts. In
this case, the training data is used to fit the regression model and the test data
is used to calculate the value of C. This procedure is referred to as decoupled
estimation [12]. The advantage of splitting the data lies in the reduction of the
computational time for calculating independence estimates C. However, in this
work, we use coupled estimation. This means that the entire data-set is used for
both the regression and the independence estimation steps. The latter approach
tends to produce more accurate results for independence estimation.

In our work, we use Linear Regression as a regression algorithm. If an appro-
priate transformation of coordinates is applied, Linear regression can be used in
the non-linear cases as well. In our experiments, we used six different indepen-
dence tests and six different entropy measures for calculating C. In general, for
the independence tests we have:

C(XTesta Y;‘es) - I(XTesta Y;‘CS))

with I(-,-) being any independence test. In the case of entropy estimators we
have:

C(XTest7 }/T'es) - H(XTest) + H(Yres)v



Effect of Noise Level on Causal Discovery 7

with H(-) being any entropy measure. The entropy-based estimator score is
derived from Lemma 1 in [12].

The following estimators were used in this work. The implementation of esti-
mators with numbers 2 - 12 was taken from the information theoretical estimators
toolbox [31]. Here we briefly introduce every estimator. Mathematical formulas
for each of them can be found in the Appendix.

1. HSIC': Hilbert-Schmidt Independence Criterion with RBF Kernel 6.

2. HSIC_IC': Hilbert-Schmidt Independence Criterion using incomplete Cholesky

decomposition”.

HSIC_IC2: Same as HSIC_IC but with lower precision.

DISTCOV: Distance covariance estimator using pairwise distances.

5. DISTCORR: Distance correlation estimator using pairwise distances. It is
simply the standardized version of the distance covariance.

6. HOEFFDING: Hoeffding’s Phi.

7. SH_KNN: Shannon differential entropy estimator using kNNs (k-nearest
neighbors) where k = 3.

8. SH_KNN_2: Same as SH_KNN but with different search method.

SH_KNN_3: Same as SH_KNN but with k = 5.

10. SH-MAXENT1: Maximum entropy distribution-based Shannon entropy es-

timator.
11. SHMAXENT2: Same as SH. MAXENT1 with minor changes.
12. SH_SPACING_V: Shannon entropy estimator using Vasicek’s spacing method.

- w

©

3.3 Identification using Conditional Variances (Uncertainty
Scoring)

The Uncertainty Scoring method is composed of Algorithm 2 and Algorithm 3
from [17]. It consists of two parts: 1) ordering and 2) conditional independence
testing.

For the first step, ordering, we used backward step-wise selection (Algo-
rithm 2), as it is more convenient for implementation. The algorithm starts with
a set .S which contains all variables represented as nodes in a causal graph. Next,
we iterate over S, and for each node, we calculate its conditional variance given
all other remaining nodes. Then, we select the node with the highest conditional
variance, append it to the ordering 7, and also remove it from the set S. With
the updated set S, we repeat this process until S is empty. Lastly, the reverse
of the ordering 7 is returned. The first node to be appended to the ordering is
the last one in the ordering, which is reflected in the name ” backward step-wise
selection”.

In the second step, we perform uncertainty scoring using Algorithm 3. This
algorithm iterates over the ordering m. For every node j, it performs conditional

5 Source: https://github.com/amber0309/HSIC
" Low rank decomposition of Gram matrices, which permits an accurate approximation
to HSIC as long as the kernel has a fast decaying spectrum.
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Algorithm 2 Backward step-wise selection

Input: All variables from an ANM: X = (z1,22,...,%Tn)
Output: Estimated ordering © = (71, 72, ..., 7n)

Set S ={1,2,...,n}
List 7 = ]
form=1...n do
for j € S do
Estimate the conditional variance z; given {z1, ...,z }\z;, O’?ls\j
end
Append 7, = argmaa:jaf-‘s\j tow
Update S = S\7mm
end
: return Reversed list m

[

independence tests conditioning on every other node [ appearing before the node
j in the ordering 7. If a node [ is dependent on j, then it is added to the set of
parents of j, denoted as Pa(j). In this algorithm, the first node in the ordering
never has parents, so the procedure starts with the second node. Fisher’s z-
transform of the partial correlation, is used for the conditional independence
testing.

Algorithm 3 Uncertainty Scoring

Input: All variables from an ANM: X = (z1,%2,...,ZTn)
Output: Dictionary with estimated parents for all variables: G = {Pa(z1) :

[...],Pa(z2): [...],-.., Pa(zn) : [...]}
1: Get ordering from backward step-wise selection: © = (w1, w2, ..., Tn)
2: G={}
3: form=2...n do
4: Pa(mm) =[]
5: forj=1...m—1do
6: Conditional independence test between 7, and 7; given {m1, ..., Tm—1}\7;
7 If dependent, include 7; into Pa(mp,)
8: end
9: Insert Pa(m,) into G
10: end
11: return G

4 Experimental setup

Generation of synthetic data. For all empirical tests, we assume X to be a
cause of Y, that is X — Y. In the sense of additive noise models, we use the
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following equations: Y = X + N, for the linear case, and Y = X3 + N,, for the
non-linear case, where

N(0,1)  or N(0,1-1) or
X ~qU(-1,1) or and Ny~ U(-1-4,1-4) or
£(0,1) £(0,1-14)

with ¢ being a scaling factor for the noise level in NNV,. The goal is to analyze
how different standard deviations (boundaries for the uniform case) in the noise
term N, relative to the standard deviations (or boundaries for the uniform case)
in the X term impact the ANM methods.

To cover various dependencies between the distributions of X and N, we
generate 199 different ¢ factors:

i €{0.01,0.02,...,1.00} U{1,2,...,100}.

For each i, every linear and non-linear combination with different distributions is
tested. Totally, we have 18 combinations corresponding to the general structures
Y =X+ Ny, and Y = X + N, where X and N,, are drawn from the three
different distributions, N, U or L.

Y=X~N+N,~N,
Y=X~N+N, ~U,
Y:XNN+NyNL,

Y=X~L+N,~L.
Note that £2 here signifies the non-linear case Y = X3 + Ny.

Evaluation. For each of the 18 combinations, we perform 100 tests. In every
test, we generate 1000 new samples for X and N, and attempt to identify the
direction of the causal relationship® using one of the two algorithms presented in
Section 3. Lastly, we simply calculate the fraction of successful tests and define
this ratio as our accuracy measure.

5 Experimental Results

Since we used a large range for the values of i-factor, several different combina-
tions of distributions, linear and non-linear data, we have too many results to
show them all in detail in this paper. Therefore, we discuss several representative
cases and provide a summary of all results. The latter shows for which values
of i-factor the models are consistently identifiable. For the detailed analysis, we
refer to the document [10]. Alternatively, all the results and source codes can be
accessed from the relative repository®”.

8 The true direction of the causal relationship is known as we generate synthetic data.
9 https://gitlab.com/Shinkaiika/noise-level-causal-identification-additive-noise-models
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5.1 Resit

We start with the analysis of Resit method. In this set of experiments, we are
interested in which ranges of i-factor allow causal identifiability and how it is
related to the functional model and the chosen independence estimator. Fig. 1
shows the detailed results for the following 4 linear combinations and their non-
linear counterparts: Y = N +U, Y =U+N,Y =U+L,and Y = L+ L. The
y-axis shows the accuracy of causal discovery (m*gu“cm), and the x-axis
corresponds to i-factor. Different colors encode 12 estimators used in this work.
The value of accuracy close to 0.5 means that Resit outputs the correct causal
direction in only 50% of the tests thus indicating unidentifiability. The values
close to 1 signify very good/consistent identifiability. In the following text, we
analyze the results for individual models.

Fig. 1a shows the linear model Y = N + U. We can see, that all estima-
tors reach an accuracy close to 100% inside the interval ¢ € [0.8;5]. However,
for smaller or larger i-factors the accuracy of all estimators start to drop until
they reach unidentifiability ( ~ 0.5). Not all estimators perform the same. For
example, HISC with Incomplete Cholesky decomposition performs worse for de-
creasing i-factors compared to all other estimators. SH.SPACING_V performs
the best among all estimators for this linear model. Fig. 1b shows the non-linear
model Y = N3 + U. The non-linear version shows much better results. With
i € [0.2;100], we have accuracy close to 100% for all estimators. Only a few
estimators drop towards unidentifiability for ¢ < 0.2.

Fig. 1c shows the linear model Y = U + A. For ¢ € [0.1;1] this model is
identifiable. However, for larger values of i-factor, the accuracy of many esti-
mators drop quickly. In this range, SH_.SPACING_V remains above 90%, most
other estimators drop between 60% and 80% but HSIC_IC and HSIC_IC2 drop
to 50% accuracy demonstrating complete unidentifiability. Fig. 1d shows the re-
sults for the non-linear version of this model. For i < 1, all estimators remain
above 90% accuracy, with the exceptions now being HSIC_IC and HSIC_IC2.
For i-factors larger than 1, estimators behave differently. SH_ KNN, SH_ KNN_2,
SH_KNN_3, DISTCOV, DISCORR and HOEFFDING remain above 90% accu-
racy up to i = 100. SH-.MAXENT1 remains between 80% and 90%, HSIC and
SH MAXENT?2 between 60% and 80%, and HSIC_IC and HSICIC2 become
unidentifiable.

Fig. le shows the linear case Y = U + £ and Fig. 1f shows the non-linear
case Y = U3 + L. The demonstrated results are quite similar to the two cases
discussed above. This indicates that models with the same type of distribution
for X behave similarly.

Fig. 1g shows the linear case Y = £ + L. For i € [0.1;10] most estimators
are above 90%, except SH_KNN, SH_KNN_2 and SH_KNN_3 which are above
90% for i € [0.4;2]. For larger values of i-factor, all estimators drop quickly to
unidentifiability. Finally, Fig. 1h shows the non-linear case Y = £3+£. Similarly
to the model Y = N34 presented in Fig. 1b, this model demonstrates that non-
linearity generally helps in identifying causal relationships. For ¢ € [0.15;100] all
estimators are above 90% accuracy, often reaching 100%.
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Table 1: Summary for Resit with linear models. The numbers reflect the ranges
of i-factor that allow identifiability with accuracy around or above 90%.

Equation N+N|N+U | N+L|U+N |[U+U | U+L |[L+N | L+U | L+ L
HSIC 0.17 - 18] 0.13 - 8| 0.05- 6 0.06 - 16| 0.04-7 | 0.1-7 [0.12-23/0.1- 13
HSIC_IC 0.65 - 26/ 0.31 - 7| 0.04-3 [0.06 - 15| 0.04-5 | 0.1-4 [0.14-26] 0.1-8
HSIC_IC2 0.7-26[033-7| 01-3 [0.14- 15/ 0.11-5 | 0.1 -4 [0.14 - 26/ 0.12 - 8
DISTCOV 0.16 - 23/ 0.13 - 7] 0.04- 7 [0.05-21]/0.04- 10| 0.1-7 [0.1-25][0.08 - 15
DISTCORR 0.16 - 23]/ 0.13- 7] 0.04- 7 [0.05- 21/ 0.04- 10| 0.1-7 [0.1-25][0.08 - 15
HOEFFDING 0.16 - 25/ 0.13 - 8| 0.04- 7 [0.05- 21| 0.04-8 [ 0.1-7 [0.1-25[0.1-10
SH KNN 0.32-12[0.76 - 1| 0.08 - 4 [0.07 - 12| 0.09 - 4 [0.61 - 1]0.27 - 12] 0.37 - 3
SH KNN _2 0.32-12[0.76 - 1| 0.08 - 4 [0.07 - 12] 0.09 -4 [0.61- 1 [0.27 - 12/ 0.37 - 3
SH_ KNN_3 0.24 - 12 0.51 - 1| 0.05- 5 [0.07 - 14] 0.05-5 [0.37 - 3[0.21 - 15/ 0.32 - 4
SH MAXENT1 0.23 - 12[0.12 - 10| 0.06 - 4 [ 0.1 - 12| 0.04 - 8 [0.07 - 13]0.11 - 24[0.07 - 17
SH MAXENT?2 0.15-22[0.13-7] 0.03-7 [0.05- 17 0.04-8 | 0.1-7 [0.11-23/0.1-13
SH _SPACING_V 0.13 - 33]0.17 - 5 {0.01 - 100]0.03 - 40[0.01 - 100{ 0.14 - 6 [0.11 - 33]0.09 - 13

Table 2: Summary for Resit with non-linear data. The numbers reflect the ranges
of i-factor that allow identifiability with accuracy around or above 90%.

Equation NANIN AU [N A LT WPAN [ WP HU [ WAL [ AN LSH+U | L2+ L
HSIC 0.04 - 100/0.08 - 100[0.04 - 100| 0.02-6 |0.03- 16| 0.03 -7 [0.02 - 100/0.04 - 100/0.02 - 100
HSIC_IC 0.04 - 830.06 - 100] 0.04 - 70 | 0.1 - 0.92 [ 0.14 - 13| 0.1 -4 |0.03 - 100/0.05 - 100/0.03 - 100
HSIC_IC2 0.08 - 8310.08 - 100/ 0.09 - 70 |0.12 - 0.91] 0.17 - 13| 0.17-4 | 0.7 - 100 [0.07 - 100{0.09 - 100
DISTCOV  [0.02 - 100[0.02 - 100[0.02 - 100[0.01 - 100 [0.01 - 100[0.01 - 100]0.01 - 100/0.01 - 100|0.01 - 100
DISTCORR [0.02 - 100[0.02 - 100]0.02 - 100/ 0.01 - 100 [0.01 - 100[0.01 - 100|0.01 - 100/0.01 - 100|0.01 - 100
HOEFFDING |0.01 - 100[0.01 - 100[0.01 - 100{0.01 - 100|0.01 - 100[0.01 - 100[0.01 - 100[0.01 - 100/0.01 - 100
SH_KNN 0.01 - 100|0.01 - 100[0.01 - 100|0.01 - 100|0.01 - 100[0.01 - 100[0.01 - 100/0.01 - 100/0.01 - 100
SH KNN_2 |0.01 - 100[0.01 - 100[0.01 - 100[0.01 - 100]0.01 - 100[0.01 - 100[0.01 - 100]0.01 - 100[0.01 - 100
SH_KNN_3 |0.01 - 100/0.01 - 100[0.01 - 100{0.01 - 100]0.01 - 100]0.01 - 100[0.01 - 100/0.01 - 100[0.01 - 100
SH MAXENTT1 [0.05 - 100/0.06 - 100[0.05 - 100]0.01 - 100 0.02 - 90 | 0.01 - 88| 0.1 - 100 [0.17 - 100/ 0.1 - 100
SH MAXENT2 |0.11 - 98 [0.16 - 100{ 0.1 - 100 | 0.03-4 |0.04- 12| 0.04 -5 |0.14 - 100[0.15 - 100/0.15 - 100
SH_SPACING_V|0.01 - 100[0.01 - 100[0.01 - 100[0.01 - 100]0.01 - 1000.01 - 100[0.01 - 100]0.01 - 100[0.01 - 100

The experimental results for Resit with linear and non-linear models are
summarized in Tables 1 and 2 respectively. The rows correspond to different
estimators, and columns correspond to structural equation models. The values
in the cells show on what range of 7 a particular estimator can reach over 90%
accuracy. Estimators have some variance in the results and thus on some intervals
they fall below 90% accuracy. The limits in the cells were chosen as follows: the
lower limit designates where an estimator reaches 90% or higher for the first
time, and the upper limit designates for which value of i it was observed for
the last time. In between, most of the time estimators remain above 90% or
rarely fall below, but never below 80% accuracy. An empty cell means that the
corresponding estimator never resulted in accuracy > 90%.

As the results show, different noise levels do have an impact on the identi-
fiability performance of Resit. In general, the linear equation models are more
fragile than the non-linear ones. This is explained by the fact that the non-linear
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relationships tend to break the symmetry between the variables easier, see [4].
The only structural equation which always remains unidentifiable is Y = N 4+ N/,
see [24]. For all other cases, all estimators reach an accuracy of over 90% for some
values of i-factor. For example, all estimators perform perfectly when the noise
level of the X term is comparable to the noise level of the corresponding noise
term (N,), that is ¢ = 1. For other values of 4, there are differences between
linear and non-linear equations. Generally, the accuracy for linear cases drops if
1 > 7. However, most non-linear cases retain accuracy over 90% for much larger
values of i-factor, even up to 100. Similar results are observed for the decreasing
i-factors.

We can also observe differences between estimators in terms of accuracy.
For example, HSIC is overall the best performing independence estimator while
HSIC_IC and HSIC_IC_2 perform the worst. SH.SPACING_V is the best per-
forming entropy estimator while SH.MAXENT1 and SH. MAXENT2 perform
the worst. Some estimators show better performance for particular structural
causal models, for example, SH.SPACING_V for Y = U + N; others are par-
ticularly unsuitable for some structural equations, for example, HSIC_IC and
HSIC_IC2 for Y = N +U. For all non-linear equation models, SH_.SPACING_V
and the three Shannon kNN estimators result in accuracy close to 100% for all
values of i. SH_.SPACING_V also keeps its good performance in the case of linear
equation models. As for independence measures, HSIC, DISTCOV, DISTCORR,
and HOEFFDING perform quite similarly and are good overall. Note again, that
these results are based on the assumption that in our bivariate structure only
one direction of the causal relationship is present, namely X — Y. Without
this assumption, we cannot compare the estimates directly but rather need to
compare the estimate to a derived p-value given some significance level a.

5.2 TUncertainty Scoring

Fig. 2 shows the results for the Uncertainty Scoring algorithm. Recall that for
these experiments we use only one estimator, the Fisher’s conditional indepen-
dence test. Therefore, we use different colors and styles of lines to encode struc-
tural equation models. The colours of the lines correspond to the distribution
type of the noise variable N, with the following coding: blue for N, ~ N, green
for Ny ~ U, and red for N, ~ L. The type of the lines encodes the distribution
type of the cause X as follows: solid line for X ~ N, dashed line for X ~ U,
and dotted line for X ~ L. As in the previous experiment, the x-axis shows
the values of i-factor and the y-axis shows the accuracy of causal identification.
However, the results should be interpreted differently. The Uncertainty Scoring
method generates a set of parents for every variable. This set can be empty or
can contain cause variables. Therefore, only one structure of this result is correct
and thus the y-axis of the plots in Fig. 2 shows consistent identifiability at 1,
and consistent unidentifiability at 0.

We proceed to the analysis of the results. First, we can notice that the linear
Gaussian model Y = N + N is now identifiable, as it was demonstrated by the
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authors of this method [17]. Interestingly, for this method, the linear cases per-
form better than the non-linear as opposed to Resit. Only the non-linear cases
where the cause X is drawn from the Uniform distribution & show the same
performance as the linear cases. This group of models demonstrates good iden-
tifiability for ¢ < 1, however the accuracy drops fast for ¢ > 1. The reason for
accuracy degradation lies within step 2 of the method, the conditional indepen-
dence test. If noise levels are significantly different, then the independence test
fails to capture the correlation between the two nodes and therefore concludes
that the nodes are independent (Type II Error). However, for any given 4, the
ordering step always performs correctly'C.

We can also notice that models with similar structures have similar perfor-
mance. For example, in Fig. 2b we can clearly identify 3 groups: 1) the group
of dashed lines representing models with X ~ U/ show the best performance for
i < 1 and the worst performance for i > 1; 2) the group of dotted lines corre-
sponding to models with X ~ £ demonstrate the worst accuracy for i < 1 and
the best accuracy for ¢ > 1; finally 3) the group of solid lines that represent
the models with X ~ A lie in the middle. A similar observation was done for
Resit as well, that is the type of the distribution of the cause variable affects the
accuracy of causal discovery. If we analyze the linear cases from Fig. 2a in the
same way, we can notice that here the type of the distribution of the noise vari-
able N, probably has more impact. Indeed, the lines overlap, but they are now
grouped more by colors than by line type. Again, we can observe 3 groups: 1)
the group of green lines corresponding to the models with N, ~ U show worse
performance for i < 1 and better performance for i > 1; 2) the group of red
lines representing the models with N, ~ £ have better performance for ¢ < 1
and worse accuracy for ¢ > 1; 3) and the group of blue lines corresponding to
N, ~ N lies in between.

The results obtained for the Uncertainty Scoring method are summarized in
Table 3. Here, each row corresponds to a combination of distribution types. The
second and the third columns show the results for linear or non-linear models
respectively. The values inside the table are encoded in the same way as it was
done for Table 1; that is they show the ranges where the method has an accuracy
around or above 90%.

6 Conclusions

The results from the experiments showed that two analyzed causal discovery
methods, Resit and Uncertainty Scoring, are affected by different noise scales.
For significantly small noise levels in the disturbance term N,, or significantly
high noise levels, these causal discovery methods fail to capture the true causal
relationship of the given structural equation model. Recall that significantly
here depends on the model. For example, for some models, if the noise level was

10 A quick test in python shell, with s = 57, X ~ £ and N, ~ U and 100 repetitions
showed that in these runs the ordering was always correct but only in 35 runs (from
the 100 repetitions) the independence tests were correct.
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Fig. 2: Results of the Uncertainty Scoring algorithm. x-axis shows the values of
i-factor and y-axis shows the accuracy of causal identification.
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Table 3: Summary for Uncertainty Scoring. The numbers reflect the ranges of
i-factor that allow identifiability with accuracy around or above 90%.

Equation| Linear |Non-Linear
N+ N ]0.08-10] 0.33-37
N+U (0.16 -10| 0.52 - 67
N+L [005-6] 0.23-25
U+N [004-5 0.04 -4
u+u 0.1-38 0.05-6
UuU+L 10.03-3 0.03-3
L+N ]0.14-13] 4-100
L+4+U ]0.19-26] 5-100
L+L [01-10 2 - 100

already twice larger then the methods failed to determine the causal direction
consistently. Other models remained identifiable with 100 times higher noise
levels. The range of different noise levels analyzed in this work is quite exhaustive
and realistically speaking having noise levels 100 times higher than the potential
cause variable is very rare. Additionally, with very high noise levels the effect
of the cause variable is very likely negligible anyways. However, the discovered
relationships can be useful to guide researchers in practical applications. We
also observed different behavior for different distribution types (e.g., Gaussian
or Uniform).

For both methods, we observed that if the variance of the noise term is
smaller than that of the cause, then models remained identifiable. The opposite
relationship is observed when the variance of the noise term is larger. For exam-
ple, often when the standard deviation of the noise term was only half of that
of the cause, the model was still identifiable. However, in several cases, if the
standard deviation of the noise term was already twice larger than the standard
deviation of the cause, then the model became unidentifiable. We also tested
linear and non-linear models and our results show that non-linear models were
still identifiable in situations where the linear models are not. For example, some
non-linear models, where the noise term’s variance was 100 times higher than
that of the cause, were still perfectly identifiable while their linear counterparts
were not.

Lastly, for Resit we used several estimators: 6 independence estimators and 6
entropy estimators. Our results show differences in terms of performance depend-
ing on which estimator is used. We observed that Hilbert-Schmidt Independence
Criterion with RBF Kernel was the best independence estimator, and Shannon
entropy estimator using Vasicek’s spacing method was the best entropy estima-
tor.

In our experiments, we tested only two particular methods and three different
distribution types. However, similar results are expected for other methods of
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causal discovery with additive noise models, as their common failing point lies
in the independence estimation.

Future work. In reality, observed data does not always strictly follow a
certain distribution type. As there are many different possible combinations, it
would be interesting to generalize the impact of different noise levels on any
distribution by using the different properties an observed distribution exhibits.
Furthermore, this work does not formalize mathematically the effect of different
noise levels in ANM causal discovery methods. This could be done in future
work.
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Appendix

Detailed description of estimators

1. HSIC: Hilbert-Schmidt Independence Criterion with RBF Kernel !

Iusro(®,y) = ||Cuyllirs
where C, is the cross-covariance operator and HS the squared Hilbert-
Schmidt norm.

2. HSIC_IC: Hilbert-Schmidt Independence Criterion using incomplete Cholesky
decomposition (low rank decomposition of the Gram matrices, which permits
an accurate approximation to HSIC as long as the kernel has a fast decay-
ing spectrum) which has 7 = 1 % 1075 precision in the incomplete cholesky
decomposition.

3. HSIC_IC2: Same as HSIC_IC but with n =1 %1072,

4. DISTCOV: Distance covariance estimator using pairwise distances. This is
simply the L2 norm of the characteristic functions 12 and ¢ of input

T, Y:
@12(u17 u2) = E[ei(ul,w>+i(u2,y)]7

i(ul,x
@l(ul) =Ele fes’s >]7
L2
p2(u’) = E[e'™ )],
With ¢ = +/—1, (-, -) the standard Euclidean inner product and E the expec-
tation. Finally, we have:
Licov(w,y) = |lp12 — p102]|L2,

5. DISTCORR: Distance correlation estimator using pairwise distances. It is
simply the standardized version of the distance covariance:

Tacow(T,y)
IdCor(‘Tﬂ y) - { \/I'iVaT'(JCJJ)IGIVM(lhy)7

3

if I(iV(LT‘('Iv x)IdVar(ya y) >0
otherwise,
with

Lavar(z,2) = |01 — p191lle2s Lavar (¥, y) = |22 — p2aip2||L2

(see characteristic functions under 4. DISTCOV)
6. HOEFFDING: Hoeffding’s Phi

2

To(w,9) = 1a(C) = <h2<d> /[ MECE H(u)]%zu)

with C standing for the copula of the input and II standing for the product
copula.

' Source: https://github.com/amber0309/HSIC
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SH_KNN: Shannon differential entropy estimator using kNNs (k-nearest
neighbors)

T
H(Y 1) =log(T — 1) — ¢(k) + log(Va) + Z

with T standing for the number of samples, p(t) - the Euclidean distance
of the k' nearest neighbour of y, in the sample Y 1.7\{y,} and V C R a
finite set.

SH_KNN_2: Same as SH_.KNN but using kd-tree for quick nearest-neighbour
lookup

SH_KNN_3: Same as SH_.KNN but with £ =5

. SH.MAXENT1: Maximum entropy distribution-based Shannon entropy

estimator

1 & 7\
H(Y .7) = H(n)— k1< ZGl yt> + ko <T;GQ(y;)—\[r> +log(5),
with

SH_ MAXENT?2: Maximum entropy distribution-based Shannon entropy
estimator, same as SH_ MAXENT1 with the following changes:

Go(z)=e2
o
> 16v3 — 27’

SH_SPACING_V: Shannon entropy estimator using Vasicek’s spacing method.

Y1 .T) Zlog ( Yit+m) — Y- m)])

with 7" number of samples, the convention that y.) := y() if £ < 1 and
Yy = yr) if t >T and m = |VT].
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