Skip to main content

Brightening Up Brain Injuries: Design, Synthesis and Characterization of a PET Diagnostic Agent for Neuronal Trauma

  • Conference paper
  • First Online:
ICT for Health, Accessibility and Wellbeing (IHAW 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1538))

  • 346 Accesses

Abstract

Concussions are an increasingly significant issue today, however, there is still no single standard, objective criterion for diagnosing them. An objective test with high sensitivity and specificity for concussions would provide a substantial advance in concussion diagnostics, which can help in the prognosis, treatment, and medical decision-making regarding the disorder. This research looks to fill the void in concussion diagnostic techniques by synthesizing a specifically designed, small molecule [18] F-radiotracer capable of binding to a biomarker of neuronal trauma, thus allowing for the imaging of its upregulation using a PET scanner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foundation, C.L.: Concussion Resources (2019). https://concussionfoundation.org/concussion-resources

  2. Mondello, S., et al.: Blood-based diagnostics of traumatic brain injuries. Expert Rev. Mol. Diagn. 11, 65–78 (2011). https://doi.org/10.1586/erm.10.104

    Article  Google Scholar 

  3. Dikmen, S.S., Levin, H.S.: Methodological issues in the study of mild head injury. J. Head Trauma Rehabil. 8, 30–37 (1993)

    Google Scholar 

  4. Kibby, M.Y., Long, C.J.: Minor head injury: attempts at clarifying the confusion. Brain Inj. 10, 159–186 (1996). https://doi.org/10.1080/026990596124494

    Article  Google Scholar 

  5. Lewis, L.M., et al.: Utility of serum biomarkers in the diagnosis and stratification of mild traumatic brain injury. Acad. Emerg. Med. 24, 710–720 (2017). https://doi.org/10.1111/acem.13174

    Article  Google Scholar 

  6. Benson, R.R., et al.: Detection of hemorrhagic and axonal pathology in mild traumatic brain injury using advanced MRI: implications for neurorehabilitation. NeuroRehabilitation 31, 261–262 (2013)

    Google Scholar 

  7. Govind, V., et al.: Whole-brain proton MR spectroscopic imaging of mild-to-moderate traumatic brain injury and correlation with neuropsychological deficits. J. Neurotrauma 27, 483–496 (2010). https://doi.org/10.1089/neu.2009.1159

    Article  Google Scholar 

  8. Gajawelli, N., et al.: Neuroimaging changes in the brain in contact versus noncontact sport athletes using diffusion tensor imaging. World Neurosurg. 80, 824–828 (2013). https://doi.org/10.1016/j.wneu.2013.10.020

    Article  Google Scholar 

  9. Bazarian, J.J., Zhu, T., Blyth, B., Borrino, A., Zhong, J.: Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion. Magn. Reason. Imaging 30, 171–180 (2012)

    Article  Google Scholar 

  10. McAllister, T.W., Sparling, M.B., Flashman, L.A., Guerin, S.J., Mamourian, A.C., Saykin, A.J.: Differential working memory load effects after mild traumatic brain injury. Neuroimage 14, 1004–1012 (2001)

    Google Scholar 

  11. Ptito, A., Chen, J.K., Johnston, K.M.: Contributions of functional magnetic resonance imaging (fMRI) to sport concussion evaluation. NeuroRehabilitation 22, 217–227 (2007)

    Article  Google Scholar 

  12. Lipton, M.L., et al.: Multifocal white matter ultrastructural abnormalities in mild traumatic brain injury with cognitive disability: a voxel-wise analysis of diffusion tensor imaging. J. Neurotrauma 25, 1335–1342 (2008). https://doi.org/10.1089/neu.2008.0547

    Article  Google Scholar 

  13. Gasparovic, C., et al.: Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H-magnetic resonance spectroscopy study. J. Neurotrauma 26, 1635–1643 (2009). https://doi.org/10.1089/neu.2009-0896

    Article  Google Scholar 

  14. Slobounov, S.M., et al.: Alteration of brain sports concussion biomarkers 669 functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. Neuroimage 55, 1716–1727 (2011)

    Article  Google Scholar 

  15. Zhang, K., et al.: Default mode network in concussed individuals in response to the YMCA physical stress test. J. Neurotrauma 29, 756–765 (2012). https://doi.org/10.1089/neu.2011.2125

    Article  Google Scholar 

  16. Slobounov, S.M., et al.: Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study. Exp. Brain Res. 202, 341–354 (2010). https://doi.org/10.1007/s00221-009-2141-6

    Article  Google Scholar 

  17. Bazarian, J.J., et al.: Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: a pilot study. J. Neurotrauma 24, 1447–1459 (2007). https://doi.org/10.1089/neu.2007.0241

    Article  Google Scholar 

  18. Huang, M.X., et al.: Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients. J. Neurotrauma 26, 1213–1226 (2009). https://doi.org/10.1089/neu.2008.0672

    Article  Google Scholar 

  19. Vakorin, V.A., et al.: Detecting mild traumatic brain injury using resting state magnetoencephalographic connectivity. PLoS Comput. Biol. 12, e1004914 (2016). https://doi.org/10.1371/journal.pcbi.1004914

    Article  Google Scholar 

  20. Dashnaw, M.L., Petraglia, A.L., Bailes, J.E.: An overview of the basic science of concussion and subconcussion: where we are and where we are going. Neurosurg. Focus 33, 1–9 (2013)

    Google Scholar 

  21. Kochanek, P.M., et al.: Biomarkers of primary and evolving damage in traumatic and ischemic brain injury: diagnosis, prognosis, probing mechanisms, and therapeutic decision making. Curr. Opin. Crit. Care 14, 135–141 (2008). https://doi.org/10.1097/MCC.0b013e3282f57564

    Article  Google Scholar 

  22. Papa, L., et al.: Systematic review of clinical research on biomarkers for pediatric traumatic brain injury. J. Neurotrauma 30, 324–338 (2013). https://doi.org/10.1089/neu.2012.2545

    Article  Google Scholar 

  23. Papa, L.T.K.M., Flores, R.J.: Exploring the role of biomarkers for the diagnosis and management of traumatic brain injury patients. In: Poteomics—Human Diseases and Protein Functions. Tech Open Access Publisher (2012). https://doi.org/10.5772/31776

  24. Papa, L., Randolph, J., Sebastianelli, W.: Biomarkers for Concussion, in: Concussions in Athletics: From Brain to Behavior. Springer, Heidelberg (2014)

    Google Scholar 

  25. Papa, L., Ramia, M.M., Edwards, D., Johnson, B.D., Slobounov, S.M.: Systematic review of clinical studies examining biomarkers of brain injury in athletes after sports-related concussion. J. Neurotrauma 32, 661–673 (2015). https://doi.org/10.1089/neu.2014.3655

    Article  Google Scholar 

  26. Otto, M., et al.: Boxing and running lead to a rise in serum levels of S-100B protein. Int. J. Sports Med. 21, 551–555 (2000). https://doi.org/10.1055/s-2000-8480

    Article  Google Scholar 

  27. Dietrich, M.O., et al.: Increase in serum S100B protein level after a swimming race. Can. J. Appl. Physiol. 28, 710–716 (2003). https://doi.org/10.1139/h03-054

    Article  Google Scholar 

  28. Mussack, T., Dvorak, J., Graf-Baumann, T., Jochum, M.: Serum S-100B protein levels in young amateur soccer players after controlled heading and normal exercise. Eur. J. Med. Res. 8, 457–464 (2003)

    Google Scholar 

  29. Stalnacke, B.M., Tegner, Y., Sojka, P.: Playing ice hockey and basketball increases serum levels of S-100B in elite players: a pilot study. Clin. J. Sport Med. 13, 292–302 (2003). https://doi.org/10.1097/00042752-200309000-00004

    Article  Google Scholar 

  30. Stalnacke, B.M., Ohlsson, A., Tegner, Y., Sojka, P.: Serum concentrations of two biochemical markers of brain tissue damage S100B and neurone specific enolase are increased in elite female soccer players after a competitive game. Br. J. Sports Med. 40, 313–316 (2006)

    Article  Google Scholar 

  31. Stalnacke, B.M., Tegner, Y., Sojka, P.: Playing soccer increases serum concentrations of the biochemical markers of brain damage S-100B and neuron-specific enolase in elite players: a pilot study. Brain Inj. 18, 899–909 (2004). https://doi.org/10.1080/02699050410001671865

    Article  Google Scholar 

  32. Hasselblatt, M., et al.: Serum S100beta increases in marathon runners reflect extracranial release rather than glial damage. Neurology 62, 1634–1636 (2004)

    Article  Google Scholar 

  33. Zetterberg, H., et al.: No neurochemical evidence for brain injury caused by heading in soccer. Brit. J. Sport Med. 41, 574–577 (2007). ARTN 574, https://doi.org/10.1136/bjsm.2007.037143

  34. Zetterberg, H., et al.: Sustained release of neuron-specific enolase to serum in amateur boxers. Brain Inj. 23, 723–726 (2009). https://doi.org/10.1080/02699050903120399

    Article  Google Scholar 

  35. Graham, M.R., et al.: Direct hits to the head during amateur boxing is associated with a rise in serum biomarkers for brain injury. Int. J. Immunopathol. Pharmacol. 24, 119–125 (2011).https://doi.org/10.1177/039463201102400114

  36. Neselius, S., et al.: CSF-biomarkers in Olympic boxing: diagnosis and effects of repetitive head trauma. PLoS ONE 7, e33606 (2012). https://doi.org/10.1371/journal.pone.0033606

    Article  Google Scholar 

  37. Neselius, S., et al.: Olympic boxing is associated with elevated levels of the neuronal protein tau in plasma. Brain Inj. 27, 425–433 (2013). https://doi.org/10.3109/02699052.2012.750752

    Article  Google Scholar 

  38. (NCBI), N. C. f. B. I. S100B (1988). https://www.ncbi.nlm.nih.gov/

  39. Yardan, T.J.: Usefullness of S100B protein in neurological disorders. Park Med. Assoc. 61, 276–281 (2011)

    Google Scholar 

  40. Papa, L.: Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA 73, 551–560 (2016)

    Google Scholar 

  41. Paans, A.M.J., Van Waarde, A., Elsinga, P.H., Willemsen, A.T.M. Vaalburg, W.: Positron emission tomography: the conceptual idea using a multidisciplinary approach. Methods 27, 195–207 (2002). Pii, https://doi.org/10.1016/S1046-2023(02)00075-0

  42. Skotland, T.: Molecular imaging: challenges of bringing imaging of intracellular targets into common clinical use. Contrast Media Mol. I(7), 1–6 (2012). https://doi.org/10.1002/cmmi.458

    Article  Google Scholar 

  43. Ametamey, S.M., Honer, M., Schubiger, P.A.: Molecular imaging with PET. Chem. Rev. 108, 1501–1516 (2008). https://doi.org/10.1021/cr0782426

    Article  Google Scholar 

  44. Trott, O., Olson, A.J.: Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455–461 (2009)

    Google Scholar 

  45. Morris, G.M., et al.: Autodock4 and autodocktools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009). https://doi.org/10.1002/jcc.21256

    Article  Google Scholar 

  46. Goodsell, D.S., Morris, G.M., Olson, A.J.: Automated docking of flexible ligands: applications of autodock. J. Mol. Recognit. 9, 1–5 (1996). https://doi.org/10.1002/(sici)1099-1352(199601)9:1%3c1::aid-jmr241%3e3.0.co;2-6

    Article  Google Scholar 

  47. Ostendorp, T., Diez, J., Heizmann, C.W., Fritz, G.: The crystal structures of human S100B in the zinc- and calcium-loaded state at three pH values reveal zinc ligand swapping. Bba-Mol. Cell Res. 1813, 1083–1091 (2011). https://doi.org/10.1016/j.bbamcr.2010.10.006

  48. Makowitz, J.: Identification and characterization of small molecule inhibitors of the calcium-dependent S100B–p53 tumour supressor interactions. J. Med. Chem. 47, 5085–5093 (2004)

    Article  Google Scholar 

  49. Mysinger, M.M., Carchia, M., Irwin, J.J., Shoichet, B.K.: Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem. 55, 6582–6594 (2012). https://doi.org/10.1021/jm300687e

    Article  Google Scholar 

  50. Huang, N., Shoichet, B.K., Irwin, J.J.: Benchmarking sets for molecular docking. J. Med. Chem. 49, 6789–6801 (2006). https://doi.org/10.1021/jm0608356

    Article  Google Scholar 

  51. Advanced Cyclotron Systems: I. TR-24 Cyclotrons (2019). https://www.advancedcyclotron.com/cyclotron-solutions/tr24

  52. Healthcare, G.E.: Vol. DOC0735494 Rev 3 (2001)

    Google Scholar 

  53. Bock, N., et al.: Chronic fluoxetine treatment changes S100B expression during postnatal rat brain development. J. Child Adolesc. Psychopharmacol. 23, 481–489 (2013). https://doi.org/10.1089/cap.2011.0065

    Article  Google Scholar 

  54. Tramontina, A.C., et al.: Secretion of S100B, an astrocyte-derived neurotrophic protein, is stimulated by fluoxetine via a mechanism independent of serotonin. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 32, 1580–1583 (2008)

    Google Scholar 

  55. Whitaker-Azmitia, P.M., Murphy, R., Azmitia, E.C.: Stimulation of astroglial 5-HT1 receptors releases the serotonergic growth factor, protein S-100, and alters astroglial morphology. Brain Res. 24, 155–158 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Allingham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Allingham, J., Floriano, W.B., Campbell, M. (2021). Brightening Up Brain Injuries: Design, Synthesis and Characterization of a PET Diagnostic Agent for Neuronal Trauma. In: Pissaloux, E., Papadopoulos, G.A., Achilleos, A., Velázquez, R. (eds) ICT for Health, Accessibility and Wellbeing. IHAW 2021. Communications in Computer and Information Science, vol 1538. Springer, Cham. https://doi.org/10.1007/978-3-030-94209-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94209-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94208-3

  • Online ISBN: 978-3-030-94209-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics