Skip to main content

Abstract

Additive Manufacturing (AM) has received a high interest in various applications, especially Powder Bed Fusion (PBF) technology. As for any industrial process, cost is one of the most important key performance indicators where good estimation and management have a direct impact on the competitiveness of the enterprise. Therefore, a detailed analysis of the current AM processes cost is essential. This paper has two main contributions, firstly, a critical analysis of the existing cost models in PBF, and metal-based material AM technologies by illustrating their main cost drivers and formulas. Secondly, an Activity-Based Costing (ABC) model is proposed with the aim to cover all important characteristics of AM process. The main cost drivers in AM process are exploited in this model to support the quotation of new product at earlier stages of AM project negotiation. The proposed costing model is part of a global knowledge-based framework for decision aid in AM project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cunningham, C.R., et al.: Cost modelling and sensitivity analysis of wire and arc additive manufacturing. Procedia Manuf. 11, 650–657 (2017)

    Article  Google Scholar 

  2. Ruffo, M., Tuck, C., Hague, R.: Cost estimation for rapid manufacturing-laser sintering production for low to medium volumes. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 220(9), 1417–1427 (2006)

    Article  Google Scholar 

  3. Busachi, A., Erkoyuncu, J., Colegrove, P., Martina, F., Watts, C., Drake, R.: A review of additive manufacturing technology and cost estimation techniques for the defence sector. CIRP J. Manuf. Sci. Technol. 19, 117–128 (2017)

    Article  Google Scholar 

  4. Costabile, G., Fera, M., Fruggiero, F., Lambiase, A., Pham, D.: Cost models of additive manufacturing: a literature review. Int. J. Ind. Eng. Comput. 8(2), 263–283 (2017)

    Google Scholar 

  5. Niazi, A., Dai, J.S., Balabani, S., Seneviratne, L.: Product cost estimation: technique classification and methodology review. J. Manuf. Sci. Eng. 128(2), 563–575 (2006)

    Article  Google Scholar 

  6. Siadat, A., Dantan, J.Y., Mauchand, M., Martin, P.: A cost estimation system for manufacturing product using ontology and exepert system. IFAC Proc. 40(18), 37–42 (2007)

    Google Scholar 

  7. Mauchand, M., Siadat, A., Perry, N., Bernard, A.: VCS: value chains simulator, a tool for value analysis of manufacturing enterprise processes (a value-based decision support tool). arXiv:1210.2091 (2012)

  8. Boenzi, F., Digiesi, S., Facchini, F., Mossa, G., Mummolo, G.: Greening activities in warehouses: a model for identifying sustainable strategies in material handling. In: Katalinic, B. (ed.) Proceedings of the 26th International DAAAM Symposium 2016, pp. 0980–0988. DAAAM International Vienna (2016). https://doi.org/10.2507/26th.daaam.proceedings.138

    Chapter  Google Scholar 

  9. Pei, E., Monzón, M., Bernard, A. (eds.): Additive Manufacturing—Developments in Training and Education. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-76084-1

    Book  Google Scholar 

  10. Facchini, F., De Chirico, A., Mummolo, G.: Comparative cost evaluation of material removal process and additive manufacturing in aerospace industry. In: Reis, J., Pinelas, S., Melão, N. (eds.) Industrial Engineering and Operations Management I: XXIV IJCIEOM, Lisbon, Portugal, July 18–20, pp. 47–59. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-14969-7_5

    Chapter  Google Scholar 

  11. Thomas, D.S., Gilbert, S.W.: Costs and cost effectiveness of additive manufacturing. NIST Spec. Publ. 1176, 12 (2014)

    Google Scholar 

  12. Standard, A.S.T.M. F2792-12a Terminology for Additive Manufacturing Technologies. ASTM International, West Conshohocken, PA (2012). https://doi.org/10.1520/F2792-12A

  13. Bhavar, V., Kattire, P., Patil, V., Khot, S., Gujar, K., Singh, R.: A review on powder bed fusion technology of metal additive manufacturing. In: Badiru, A.B., Valencia, V.V., Liu, D. (eds.) Additive Manufacturing Handbook: Product Development for the Defense Industry, pp. 251–253. CRC Press (2017). https://doi.org/10.1201/9781315119106-15

    Chapter  Google Scholar 

  14. Zhang, Y., et al.: Additive manufacturing of metallic materials: a review. J. Mater. Eng. Perform. 27(1), 1–13 (2018)

    Article  Google Scholar 

  15. Bahnini, I., Rivette, M., Rechia, A., Siadat, A., Elmesbahi, A.: Additive manufacturing technology: the status, applications, and prospects. Int. J. Adv. Manuf. Technol. 97(1–4), 147–161 (2018)

    Article  Google Scholar 

  16. Huang, X.X., Newnes, L.B., Parry, G.C.: The adaptation of product cost estimation techniques to estimate the cost of service. Int. J. Comput. Integr. Manuf. 25(4–5), 417–431 (2012)

    Article  Google Scholar 

  17. Cost Engineering Terminology, AACE International Recommendation Practices 10S-90. https://web.aacei.org/docs/default-source/rps/10s-90.pdf? Accessed 01 March 2021

  18. Kadir, A.Z.A., Yusof, Y., Wahab, M.S.: Additive manufacturing cost estimation models—a classification review. Int. J. Adv. Manuf. Technol. 107(9), 4033–4053 (2020)

    Article  Google Scholar 

  19. Roy, R.: Cost Engineering: Why, What and How? Decision Engineering Report Series. Cranfield (2003). ISBN 1-861940-96-3

    Google Scholar 

  20. Schröder, M., Falk, B., Schmitt, R.: Evaluation of cost structures of additive manufacturing processes using a new business model. Procedia CIRP 30, 311–316 (2015)

    Article  Google Scholar 

  21. Barclift, M., Joshi, S., Simpson, T., Dickman, C.: Cost modeling and depreciation for reused powder feedstocks in powder bed fusion additive manufacturing. In: Solid Free. Fabr. Symp., pp. 2007–2028 (2016)

    Google Scholar 

  22. Rickenbacher, L., Spierings, A., Wegener, K.: An integrated cost‐model for selective laser melting (SLM). Rapid Prototyping J. 19(3), 208–214 (2013)

    Article  Google Scholar 

  23. Rudolph, J.P., Emmelmann, C.: Self-learning calculation for selective laser melting. Procedia CIRP 67, 185–190 (2018)

    Article  Google Scholar 

  24. Chan, S.L., Lu, Y., Wang, Y.: Data-driven cost estimation for additive manufacturing in cyber-manufacturing. J. Manuf. Syst. 46, 115–126 (2018)

    Article  Google Scholar 

  25. Lindemann, C.F.W., Jahnke, U.: Modelling of laser additive manufactured product lifecycle costs. In: Laser Additive Manufacturing, pp. 281–316. Elsevier (2017). https://doi.org/10.1016/B978-0-08-100433-3.00011-7

    Chapter  Google Scholar 

  26. Kamps, T., Lutter-Guenther, M., Seidel, C., Gutowski, T., Reinhart, G.: Cost-and energy-efficient manufacture of gears by laser beam melting. CIRP J. Manuf. Sci. Technol. 21, 47–60 (2018)

    Article  Google Scholar 

  27. Bosch-Mauchand, M., Belkadi, F., Bricogne, M., Eynard, B.: Knowledge-based assessment of manufacturing process performance: integration of product lifecycle management and value-chain simulation approaches. Int. J. Comput. Integr. Manuf. 26(5), 453–473 (2013)

    Article  Google Scholar 

  28. Ben-Arieh, D., Qian, L.: Activity-based cost management for design and development stage. Int. J. Prod. Econ. 83(2), 169–183 (2003)

    Article  Google Scholar 

  29. Munguía, J., Ciurana, J., Riba, C.: Neural-network-based model for build-time estimation in selective laser sintering. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223(8), 995–1003 (2009)

    Article  Google Scholar 

  30. Di Angelo, L., Di Stefano, P.: A neural network-based build time estimator for layer manufactured objects. Int. J. Adv. Manuf. Technol. 57(1–4), 215–224 (2011)

    Article  Google Scholar 

  31. McComb, C., Murphey, C., Meisel, N., Simpson, T.W.: Predicting part mass, required supportmaterial, and build time via Autoencoded VoxelPatterns,. In: 29th Annu. Int. Solid Free. Fabr. Symp., pp. 1–15 (2018)

    Google Scholar 

Download references

Acknowledgement

The presented results were conducted within the French national project “SOFIA” (SOlution pour la Fabrication Industrielle Additive métallique). This project has received the support from the French Public Investment Bank (Bpifrance) and the French National Center for Scientific Research (CNRS). The authors would like to thank all industrial and academic partners for their involvement in this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qussay Jarrar , Farouk Belkadi or Alain Bernard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jarrar, Q., Belkadi, F., Bernard, A. (2022). An Activity-Based Costing Model for Additive Manufacturing. In: Canciglieri Junior, O., Noël, F., Rivest, L., Bouras, A. (eds) Product Lifecycle Management. Green and Blue Technologies to Support Smart and Sustainable Organizations. PLM 2021. IFIP Advances in Information and Communication Technology, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-030-94335-6_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94335-6_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94334-9

  • Online ISBN: 978-3-030-94335-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics