Abstract
Business process modeling is essential for organisations. However, it is a time-consuming task that requires expert knowledge. In particular, this is the case when modeling domain-specific processes, which often involves the consistent use of technical terminology. Process modelers can be supported through the provision of recommendations on how the model under development can be expanded. Activity recommendation is one such support approach, in which suitable activities to be inserted at a user-defined position are recommended. Recently, it has been suggested to treat activity recommendation as a knowledge graph completion task and to apply methods from this discipline. In this paper, we investigate different approaches to apply embedding- and rule-based knowledge graph completion methods out of the box and evaluate them in an experimental study. Additionally, we compare them to two methods that have specifically been designed for activity recommendation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that we performed the experiments dividedly on two computers: Intel® Xeon® CPU E5-2640 v3@40x2.40 GHz and Intel® Xeon® Silver 4114 CPU@40x2.20 GHz.
- 2.
We also tested other popular KGE models (ComplEx, ConvE) but they yielded comparatively poor results that we do not report here.
- 3.
These parameter settings are specified by MAX_LENGTH_CYCLIC = 5 and MAX_LENGTH_ACYCLIC = 2.
References
Bordes, A., Usunier, N., GarcÃa-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)
Broscheit, S., Ruffinelli, D., Kochsiek, A., Betz, P., Gemulla, R.: LibKGE - a knowledge graph embedding library for reproducible research. In: EMNLP: System Demonstrations, pp. 165–174 (2020)
Cao, B., Yin, J., Deng, S., Wang, D., Wu, Z.: Graph-based workflow recommendation: on improving business process modeling. In: CIKM, pp. 1527–1531. ACM (2012)
Deng, S., et al.: A recommendation system to facilitate business process modeling. IEEE Trans. Cybern. 47(6), 1380–1394 (2017)
Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-33143-5
Fellmann, M., Zarvic, N., Metzger, D., Koschmider, A.: Requirements catalog for business process modeling recommender systems. In: WI, pp. 393–407 (2015)
Frederiks, P.J., Van der Weide, T.P.: Information modeling: the process and the required competencies of its participants. DKE 58(1), 4–20 (2006)
Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural language text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21640-4_36
Jannach, D., Fischer, S.: Recommendation-based modeling support for data mining processes. In: RecSys, pp. 337–340 (2014)
Jannach, D., Jugovac, M., Lerche, L.: Supporting the design of machine learning workflows with a recommendation system. ACM TiiS 6(1), 1–35 (2016)
Li, Y., et al.: An efficient recommendation method for improving business process modeling. IEEE Trans. Industr. Inf. 10(1), 502–513 (2014)
Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule learning for knowledge graph completion. In: IJCAI, pp. 3137–3143. AAAI Press (2019)
Model collection of the BPM Academic Initiative. http://bpmai.org/
Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46523-4_30
Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Discov. Data (TKDD) 15(2), 1–49 (2021)
Ruffinelli, D., Broscheit, S., Gemulla, R.: You CAN teach an old dog new tricks! On training knowledge graph embeddings. In: ICLR. OpenReview.net (2020)
Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38
Sola, D.: Towards a rule-based recommendation approach for business process modeling. In: Hacid, H., et al. (eds.) ICSOC 2020. LNCS, vol. 12632, pp. 25–31. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76352-7_4
Sola, D., Meilicke, C., van der Aa, H., Stuckenschmidt, H.: A rule-based recommendation approach for business process modeling. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) CAiSE 2021. LNCS, vol. 12751, pp. 328–343. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79382-1_20
Song, H.J., Park, S.B.: Enriching translation-based knowledge graph embeddings through continual learning. IEEE Access 6, 60489–60497 (2018)
Wang, H., Wen, L., Lin, L., Wang, J.: RLRecommender: a representation-learning-based recommendation method for business process modeling. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 478–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03596-9_34
Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)
Yang, B., tau Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (Poster) (2015)
Yao, L., Mao, C., Luo, Y.: KG-BERT: BERT for knowledge graph completion. CoRR abs/1909.03193 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Sola, D., Meilicke, C., van der Aa, H., Stuckenschmidt, H. (2022). On the Use of Knowledge Graph Completion Methods for Activity Recommendation in Business Process Modeling. In: Marrella, A., Weber, B. (eds) Business Process Management Workshops. BPM 2021. Lecture Notes in Business Information Processing, vol 436. Springer, Cham. https://doi.org/10.1007/978-3-030-94343-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-94343-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-94342-4
Online ISBN: 978-3-030-94343-1
eBook Packages: Computer ScienceComputer Science (R0)