Skip to main content

From Dispersed Knowledge to Ontology: A Proposal for Formalizing and Integrating 4D Printing in Design

  • Conference paper
  • First Online:
Product Lifecycle Management. Green and Blue Technologies to Support Smart and Sustainable Organizations (PLM 2021)

Abstract

Current research efforts related to 4D printing (4DP) has reached an unprecedented level in smart materials (SM) driven era. It is mainly about manufacturing parts/products combining additive manufacturing (AM) techniques and reactive matters. The latter association leads to transformable products presenting abilities of shape morphing, colour changing, etc., after being triggered with adequate stimuli. Thus, many ad-hoc solutions appeared in literature, in the last decade, with different dispersed expertises. Indeed, the information available about how to carry such smart products automatically is limited and poorly known. This lack of common core knowledge is primarily due to the various skills involved in printing stimuli-reactive products. Hence, different user profiles, i.e. the product designer, product architect, process planner, etc., cannot take profit from this pioneering technology. Thus, the product design process must incorporate such technology to tackle design for 4DP issues. In this context, this paper proposes a framework that starts from establishing an ontological structure for the semantic and logical description of smart products respecting multi-dimensionalism (three- and four-dimensional objects), semantic reasoning theories and description logic language. The latter describes formally the proposed ontology and defines knowledge extraction from the above-mentioned ontology respecting some user profiles needs. At the end, a strategy for integrating this federated knowledge in cognitive CAD methods and tools is deployed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tibbits, S., McKnelly, C., Olguin, C., Dikovsky, D., Hirsch, S.: 4D printing and universal transformation. In: Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture, pp. 539–548 (2014).

    Google Scholar 

  2. Momeni, F., Mehdi, S.M., Liu, X., Ni, J.: A review of 4D printing. Mater. Des. 122, 42–79 (2017)

    Article  Google Scholar 

  3. Choi, J., Kwon, O., Jo, W., Lee, H.J., Moon, M.-W.: 4D printing technology: a review. 3D Print. Addit. Manuf. 2(4), 159–167 (2015)

    Article  Google Scholar 

  4. Kuang, X., et al.: Grayscale digital light processing 3D printing for highly functionally graded materials. Sci. Adv. 5(5), 1–10 (2019)

    Article  Google Scholar 

  5. Holt, R., Barnes, C.: Towards an integrated approach to ‘“Design for X”: an agenda for decision-based DFX research. Res. Eng. Des. 21, 123–136 (2010)

    Article  Google Scholar 

  6. Kang, Y., Walish, J.J., Gorishnyy, T., Thomas, E.L.: Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat. Mater. 6, 957–960 (2007)

    Article  Google Scholar 

  7. Woodruff, M.A., Hutmacher, D.W.: The return of a forgotten polymer polycaprolactone in the 21st century. Prog. Polym. Sci. 35, 1217–1256 (2010)

    Article  Google Scholar 

  8. Westbrook, K.K., Qi, H.J.: Actuator designs using environmentally responsive hydrogels. J. Intell. Mater. Syst. Struct. 19(5), 597–607 (2008)

    Article  Google Scholar 

  9. Yakacki, B.C.M., Shandas, R., Safranski, D., Ortega, A.M., Sassaman, K., Gall, K.: Strong, tailored, biocompatible shape-memory polymer networks. Adv. Funct. Mater. 18, 2428–2435 (2008)

    Article  Google Scholar 

  10. Anand, L., Ames, N.M., Srivastava, V., Chester, S.A.: A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: Formulation. Int. J. Plast. 25(8), 1138–1182 (2009)

    Article  Google Scholar 

  11. Jinlian, H., Meng, H., Li, G.Q., Ibekwe, S.I.: A review of stimuli-responsive polymers for smart textile applications. Smart Mater. Struct. 21(5), 053001 (2012). https://doi.org/10.1088/0964-1726/21/5/053001

    Article  Google Scholar 

  12. Lebel, L.L., Aissa, B., Ali, M., Khakani, E., Therriault, D.: Ultraviolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils. Adv. Mater. 22, 592–596 (2010)

    Article  Google Scholar 

  13. Roy, D., Cambre, J.N., Sumerlin, B.S.: Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 35, 278–301 (2010)

    Article  Google Scholar 

  14. Cohen, M.A., et al.: Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9(2), 101–113 (2010). https://doi.org/10.1038/nmat2614

    Article  Google Scholar 

  15. Zarek, M., et al.: 4D printing shape memory polymers for dynamic jewellery and fashionwear. Virtual Physi. Prototyp. 11(4), 263–270 (2016)

    Article  Google Scholar 

  16. Ahmed, S., Lauff, C., Ounaies, Z., Simpson, T.W.: Multi-field responsive origami structures : preliminary modeling and experiments. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE, August (2013)

    Google Scholar 

  17. Holmes, D.P., Roché, M., Sinha, T., Stone, H.A.: Bending and twisting of soft materials by non-homogenous swelling. Soft Matter 7(11), 5188–5193 (2011)

    Article  Google Scholar 

  18. Best, J.P., Neubauer, M.P., Javed, S., Dam, H.H., Fery, A., Caruso, F.: Mechanics of pH-responsive hydrogel capsules. Langmuir 29(31), 9814–9823 (2013). https://doi.org/10.1021/la402111v

    Article  Google Scholar 

  19. Stoychev, G., Turcaud, S., Dunlop, J.W.C., Ionov, L.: Hierarchical multi-step folding of polymer bilayers. Adv. Funct. Mater. 23, 2295–2300 (2013). https://doi.org/10.1002/adfm.201203245

    Article  Google Scholar 

  20. Thérien-Aubin, H., Wu, Z.L., Nie, Z., Kumacheva, E.: Multiple shape transformations of composite hydrogel sheets multiple. J. Am. Chem. Soc. 12, 4834–4839 (2013)

    Article  Google Scholar 

  21. Knaian, A.N.: Programmable matter. Phys. Today 66(6), 64–65 (2013)

    Article  Google Scholar 

  22. Ge, Q., Qi, H.J., Dunn, M.L., Ge, Q., Qi, H.J., Dunn, M.L.: Active materials by four-dimension printing. Appl. Phys. Lett. 103(131901), 102–108 (2013)

    Google Scholar 

  23. Tibbits, S.: 4D Printing: Multi Material Shape Change, pp. 116–121 (2013)

    Google Scholar 

  24. Lee, Y., Lee, H., Hwang, T., Lee, J., Cho, M.: Sequential Folding Using Light-activated Polystyrene Sheet. Nature Publishing Group, pp. 1–9 (2015)

    Google Scholar 

  25. Khare, V., Sonkaria, S., Lee, G.-Y., Ahn, S.-H., Chu, W.-S.: From 3D to 4D printing – design, material and fabrication for multi-functional multi-materials. Int. J. Precis. Eng. Manuf. Green Technol. 4(3), 291–299 (2017). https://doi.org/10.1007/s40684-017-0035-9

    Article  Google Scholar 

  26. Khoo, Z.X., et al.: 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys. Prototyp. 10(3), 103–122 (2015)

    Article  Google Scholar 

  27. Raviv, D., et al.: Active printed materials for complex self evolving deformations. Sci. Rep. 4(7422), 1–9 (2014)

    Google Scholar 

  28. Ge, Q., Dunn, C.K., Qi, H.J., Dunn, M.L.: Active origami by 4D printing. IOP Sci. 23(9), 094007 (2014)

    Google Scholar 

  29. Lauff, C., et al.: Differentiating bending from folding in origami engineering using active materials. In: Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE 2014, Buffalo, New York, USA, pp. 1–12 (2014)

    Google Scholar 

  30. Naficy, S., Gately, R., Iii, R.G., Xin, H., Spinks, G.M.: 4D printing of reversible shape morphing hydrogel structures. Macromol. Mater. Eng. 1–9 (2016).

    Google Scholar 

  31. Peraza-hernandez, E.A., Hartl, D.J., Malak, R.J.: Origami-inspired active structures: a synthesis and review. IOP Sci. 23(9), 094001 (2014)

    Google Scholar 

  32. Hager, M.D., Bode, S., Weber, C., Schubert, U.S.: Shape memory polymers: past, present and future developments. Prog. Polym. Sci. 49–50, 3–33 (2015)

    Article  Google Scholar 

  33. Khademhosseini, A., Langer, R.: A decade of progress in tissue engineering. Nat. Protoc. 11(10), 6–9 (2016)

    Article  Google Scholar 

  34. Sydney Gladman, A., Matsumoto, E.A., Nuzzo, R.G., Mahadevan, L., Lewis, J.A.: Biomimetic 4D printing. Nat. Mater. 15(4), 413–418 (2016)

    Article  Google Scholar 

  35. Sossou, G., Demoly, F., Belkebir, H., Qi, H.J., Gomes, S., Montavon, G.: Design for 4D printing: a voxel-based modeling and simulation of smart materials. Mater. Des. 175, 107798 (2019)

    Article  Google Scholar 

  36. Sossou, G., Demoly, F., Belkebir, H., Qi, H.J., Gomes, S., Montavon, G.: Design for 4D printing: modeling and computation of smart materials distributions. Mater. Des. 181, 108074 (2019)

    Article  Google Scholar 

  37. Borst, W.: Construction of Engineering Ontologies (1997)

    Google Scholar 

  38. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Aquisit. 5(2), 199–220 (1993)

    Article  Google Scholar 

  39. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. 25(1–2), 161–197 (1998)

    Article  Google Scholar 

  40. Dartigues, C., Ghodous, P., Gruninger, M., Pallez, D., Sriram, R.: CAD/CAPP integration using feature ontology. Concurr. Eng. Res. Appl. 15(2), 237–249 (2007)

    Article  Google Scholar 

  41. Grüninger, M., Delaval, A.: A first-order cutting process ontology for sheet metal parts. In: Frontiers in Artificial Intelligence and Applications, Formal Ontologies Meet Industry 198, vol. 8. IOS Press, Amsterdam, pp. 22–33 (2019)

    Google Scholar 

  42. Bateman, J., Garcia, A., Garcia, L.E.R.: An ontology-based feature recognition and design rule checker for engineering. In: Proceedings of the Workshop “Ontologies Come of Age in the Semantic Web”, Bonn, Germany, pp. 48–59 (2011)

    Google Scholar 

  43. Kim, S., Rosen, D.W., Witherell, P., Ko, H.: A Design for additive manufacturing ontology to support manufacturability analysis. J. Comput. Inf. Sci. Eng. 19(4), 041014 (2019)

    Article  Google Scholar 

  44. Liang, J.S.: An ontology-oriented knowledge methodology for process planning in additive layer manufacturing. Robot. Comput. Integr. Manuf. 53, 28–44 (2018)

    Article  Google Scholar 

  45. Zhang, Y., Luo, X., Zhao, Y., Zhang, H.C.: An ontology-based knowledge framework for engineering material selection. Adv. Eng. Inform. 29(4), 985–1000 (2015)

    Article  Google Scholar 

  46. Hagedorn, T.J., et al.: Interoperability of Disparate Engineering Domain Ontologies Using Basic Formal Ontology, Abstract 4828 (2019)

    Google Scholar 

  47. Dimassi, S., et al.: An ontology based-framework to formalize and represent 4D printing knowledge in design. Comput. Ind. 126, 103374 (2021)

    Article  Google Scholar 

  48. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/9781139025355

    Book  MATH  Google Scholar 

  49. Andreasen, M.M.: 45 years with design methodology. J. Eng. Des. 22(5), 293–332 (2011)

    Article  Google Scholar 

  50. Liu, J., Hu, X.: A reuse oriented representation model for capturing and formalizing the evolving design rationale. Artif. Intell. Eng. Des. Anal. Manuf. 27(4), 401–413 (2013)

    Article  Google Scholar 

  51. Bonvoisin, J., Halstenberg, F., Buchert, T., Stark, R.: A systematic literature review on modular product design. J. Eng. Des. 27(7), 488–514 (2016)

    Article  Google Scholar 

  52. Demoly, F., Monticolo, D., Eynard, B., Rivest, L., Gomes, S.: Multiple viewpoint modelling framework enabling integrated product-process design. Int. J. Interact. Des. Manuf. 4(4), 269–280 (2010)

    Article  Google Scholar 

  53. Demoly, F., Yan, X.T., Eynard, B., Rivest, L., Gomes, S.: An assembly oriented design framework for product structure engineering and assembly sequence planning. Robot. Comput. Integr. Manuf. 27(1), 33–46 (2011)

    Article  Google Scholar 

  54. Kuo, T.C., Huang, S.H., Zhang, H.C.: Concurrent engineering and DFMA/DFX in the development of automotive components. Proc. CIRP 41, 241–260 (2001)

    Google Scholar 

  55. Segonds, F., Rivette, M., Turpault, S., Peyre, P.: Design for additive manufacturing (DfAM) methodologies: a proposal to foster the design of microwave waveguide components. Virtual Phys. Prototyp. 14(2), 175–187 (2019)

    Article  Google Scholar 

  56. Wiberg, A., Persson, J., Ölvander, J.: Design for additive manufacturing – a review of available design methods and software. Rapid Prototyp. J. 25(6), 1080–1094 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research activity is part of a much larger project in the field of design for 4D printing. The authors would like to thank the French Ministère de l’Enseignement Supérieure et de la Recherche, the French “Investissements d’Avenir” program, project ISITE-BFC (contract ANR-15-IDEX-0003) as main financial supports of this research program, and S. mart Franche-Comté network for their participation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saoussen Dimassi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dimassi, S., Demoly, F., Cruz, C., Gomes, S. (2022). From Dispersed Knowledge to Ontology: A Proposal for Formalizing and Integrating 4D Printing in Design. In: Canciglieri Junior, O., Noël, F., Rivest, L., Bouras, A. (eds) Product Lifecycle Management. Green and Blue Technologies to Support Smart and Sustainable Organizations. PLM 2021. IFIP Advances in Information and Communication Technology, vol 640. Springer, Cham. https://doi.org/10.1007/978-3-030-94399-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94399-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94398-1

  • Online ISBN: 978-3-030-94399-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics