Skip to main content

UAV for Precision Agriculture in Vineyards: A Case Study in Calabria

  • Conference paper
  • First Online:
Geomatics and Geospatial Technologies (ASITA 2021)

Abstract

It is well known that nowadays remote sensing has a very crucial role in agricultural applications using in particular spectral indices as analysis tools useful to describe the temporal and spatial variability of crops, derived from processing of satellite images, each with different resolutions on the ground, according to the satellite of origin. It is also known that today such information can also be obtained through the use of sensors mounted on UAV (Unmanned Aerial Vehicle). In the present note we want to carry out a detailed analysis to define the condition of vigor of a vineyard situated in the province of Reggio Calabria (Southern Italy), comparing multispectral satellite images (Sentinel-2) with those provided by UAV platforms at low altitude, using as a parameter of effectiveness the relationship between the NDVI (Normalized Difference Vegetation Index) and the vigor of the crops. It is also proposed a GIS (Geographic Information System) for the management of agricultural land in order to build a system that can provide alerts in case interventions are needed depending on crop water stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnó, J., Martínez-Casasnovas, J.A., Ribes-Dasi, M., Rosell, J.R.: Review, precision viticulture, research topics, challenges and opportunities in site-specific vineyard management. Span. J. Agric. Res. 7, 779–790 (2009)

    Article  Google Scholar 

  2. Silvestroni, O., Lanari, V., Lattanzi, T.: Canopy management strategies to control yield and grape composition of Montepulciano grapevines. Aust. J. Grape Wine Res 25, 30–42 (2018)

    Article  Google Scholar 

  3. Bramley, R.G.V., Hamilton, R.P.: Understanding variability in winegrape production systems. Aust. J. Grape Wine Res 10, 32–45 (2004)

    Article  Google Scholar 

  4. Song, J., et al.: Pinot Noir wine composition from different vine vigour zones classified by remote imaging technology. Food Chem 153, 52–59 (2014)

    Article  Google Scholar 

  5. Khaliq, A., Comba, L., Biglia, A., Ricauda Aimonino, D., Chiaberge, M., Gay, P.: Comparison of satellite and UAV-based multispectral imagery for vineyard variability assessment. Remote Sensing. 11, 436 (2019)

    Article  Google Scholar 

  6. Primicerio, J., Gay, P., Ricauda Aimonino, D., Comba, L., Matese, A., Di Gennaro, S.F.: NDVI-based vigour maps production using automatic detection of vine rows in ultra-high resolution aerial images. In: Proceedings of the 10th European Conference on Precision Agriculture, Israel, pp. 465–470 (2015)

    Google Scholar 

  7. Hall, A., Lamb, D.W., Holzapfel, B., Louis, J.: Optical remote sensing applications in viticulture - a review. Aust. J. Grape Wine Res 8, 36–47 (2002)

    Article  Google Scholar 

  8. Lanjeri, S., Melia, J., Segarra, D.: A multi-temporal masking classification method for vineyard monitoring in central Spain. Int. J. Remote Sens 22, 3167–3186 (2001)

    Article  Google Scholar 

  9. Bramley, R., Proffitt, A.P.B.: Managing variability in viticultural production. Grapegrow. Winemak 427, 11–16 (1999)

    Google Scholar 

  10. Enenkel, M., et al.: What rainfall does not tell us—enhancing financial instruments with satellite-derived soil moisture and evaporative stress. Remote Sens. 10, 1819 (2018)

    Article  Google Scholar 

  11. Romero, M., Luo, Y., Su, B., Fuentes, S.: Vineyard water status estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management. Comput. Electron. Agric 147, 109–117 (2018)

    Article  Google Scholar 

  12. Comba, L., Biglia, A., Ricauda Aimonino, D., Gay, P.: Unsupervised detection of vineyards by 3D point-cloud UAV photogrammetry for precision agriculture. Comput. Electron. Agric 155, 84–95 (2018)

    Article  Google Scholar 

  13. Dobrowski, S.Z., Ustin, S.L., Wolpert, J.A.: Remote estimation of vine canopy density in vertically shoot-positioned vineyards: determining optimal vegetation indices. Aust. J. Grape Wine Res 8, 117–125 (2002)

    Article  Google Scholar 

  14. Sun, L., et al.: Daily mapping of 30 m LAI and NDVI for grape yield prediction in California vineyards. Remote Sens 9, 317 (2017)

    Article  Google Scholar 

  15. Johnson, L.F.: Temporal stability of an NDVI-LAI relationship in a Napa Valley vineyard. Aust. J. Grape Wine Res 9, 96–101 (2003)

    Article  Google Scholar 

  16. Johnson, L.F., Bosch, D.F., Williams, D.C., Lobitz, B.M.: Remote sensing of vineyard management zones: Implications for wine quality. Appl. Eng. Agric 17, 557–560 (2001)

    Article  Google Scholar 

  17. Barrile, V., Candela, G., Fotia, A., Bernardo, E.: UAV survey of bridges and viaduct: workflow and application. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11622, pp. 269–284. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24305-0_21

    Chapter  Google Scholar 

  18. Barrile, V., Fotia, A., Bernardo, E.: The submerged heritage: a virtual journey in our seabed. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 42(2/W10), 17–24 (2019)

    Google Scholar 

  19. Robinson, N.P., et al.: A dynamic landsat derived normalized difference vegetation index (NDVI) product for the conterminous United States. Remote Sens. 9, 863 (2017)

    Article  Google Scholar 

  20. Barrile, V., Bilotta. G.: An application of remote sensing: object oriented analysis of satellite data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 37, 107–114 (2008)

    Google Scholar 

  21. Johnson, L.F., Roczen, D.E., Youkhana, S.K., Nemani, R.R., Bosch, D.F.: Mapping vineyard leaf area with multispectral satellite imagery. Comput. Electron. Agric 38, 33–44 (2003)

    Article  Google Scholar 

  22. Sentinel-2A Processing Baseline (02.04). https://sentinel.esa.int/web/sentinel/missions/sentinel-2/news/-/article/new-processing-baseline-02-04-for-sentinel-2a-products, Accessed 11 Jan 2020

  23. Borgogno-Mondino, E., Lessio, A., Tarricone, L., Novello, V., de Palma, L.: A comparison between multispectral aerial and satellite imagery in precision viticulture. Prec. Agric. 19(2), 195–217 (2017). https://doi.org/10.1007/s11119-017-9510-0

    Article  Google Scholar 

  24. Senthilnath, J., Kandukuri, M., Dokania, A., Ramesh, K.N.: Application of UAV imaging platform for vegetation analysis based on spectral-spatial methods. Comput. Electron. Agric. 140, 8–24 (2017)

    Article  Google Scholar 

  25. Peña, J.M., Torres-Sánchez, J., de Castro, A.I., Kelly, M., López-Granados, F.: Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS ONE 8, e77151 (2013)

    Google Scholar 

  26. Comba, L., Gay, P., Primicerio, J., Ricauda Aimonino, D.: Vineyard detection from unmanned aerial systems images. Comput. Electron. Agric. 114, 78–87 (2015)

    Article  Google Scholar 

  27. Barrile, V., Bilotta, G., Fotia, A., Bernardo, E.: Road extraction for emergencies from satellite imagery. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12252, pp. 767–781. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58811-3_55

    Chapter  Google Scholar 

  28. Barrile, V., Bilotta, G., Fotia, A., Bernardo, E.: Integrated GIS system for post-fire hazard assessments with remote sensing. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLIV, 13-20 (2020)

    Google Scholar 

  29. Deng, L., Mao, Z., Li, X., Zhuowei, H., Duan, F., Yan, Y.: UAV-based multispectral remote sensing for precision agriculture: a comparison between different cameras. ISPRS J. Photogramm Remote Sens. 146, 124–136 (2018). https://doi.org/10.1016/j.isprsjprs.2018.09.008

    Article  Google Scholar 

  30. Navia, J., Mondragon I., Patino, D., Colorado, J.: Multispectral mapping in agriculture: Terrain mosaic using an autonomous quadcopter UAV. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1351–1358 (2018)

    Google Scholar 

  31. Hall, A., Louis, J., Lamb, D.W.: A method for extracting detailed information from high resolution multispectral images of vineyards. CiteSeerx 10M (2001)

    Google Scholar 

  32. Barrile, V., Bernardo, E., Candela, G., Bilotta, G., Modafferi, A., Fotia, A.: Road infrastructure heritage: from scan to infrabim. WSEAS Trans. Environ. Dev. 16, 633–642 (2020). https://doi.org/10.37394/232015.2020.16.65

    Article  Google Scholar 

  33. Reza, M.N., Na, I.S., Baek, S.W., Lee, K.-H.: Rice yield estimation based on K-means clustering with graph-cut segmentation using low-altitude UAV images. Biosyst. Eng. 177, 109–121 (2018)

    Article  Google Scholar 

  34. Albetis, J., et al.: Detection of Flavescence dorée grapevine disease using unmanned aerial vehicle (UAV) multispectral imagery. Remote Sens. 9, 308 (2017)

    Article  Google Scholar 

  35. Barrile, V., Fotia, A., Candela, G., Bernardo, E.: Integration of 3D model from UAV survey in BIM environment. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 42(2/W11), 195–199 (2019)

    Google Scholar 

  36. ESA Earth Online. https://earth.esa.int/documents/247904/685211/Sentinel-2_User_Handbook, Accessed 25 Nov 2019

  37. Ducati, J.R., Bombassaro, M.G., Fachel, J.M.G.: Classifying vineyards from satellite images: a case study on burgundy’s côte d’or. Oeno One 48, 247–260 (2014)

    Article  Google Scholar 

  38. Copernicus Open Access Hub. https://scihub.copernicus.eu/dhus/#/home, Accessed 11 Jan 2020

  39. Louis, J., Charantonis, A., Berthelot, B.: Cloud detection for sentinel-2. In: Proceedings of the ESA Living Planet Symposium, Bergen, Norway (2010)

    Google Scholar 

  40. Agisoft©. https://www.agisoft.com, Accessed 11 Jan 2020

  41. Parrot Drones©. https://www.parrot.com/business-solutions-us/agriculture#agriculture, Accessed 11 Jan 2020

  42. MicaSense. https://www.micasense.com/accessories/#!/Calibrated-Reflectance-Panel, Accessed 11 Jan 2020

  43. Jiang, R., et al.: Assessing the operation parameters of a low-altitude UAV for the collection of NDVI values over a paddy rice field. Remote Sens. 12, 1850 (2020)

    Article  Google Scholar 

  44. DatiMeteo. https://datimeteo.it, Accessed 11 Aug 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Bernardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bilotta, G., Bernardo, E. (2022). UAV for Precision Agriculture in Vineyards: A Case Study in Calabria. In: Borgogno-Mondino, E., Zamperlin, P. (eds) Geomatics and Geospatial Technologies. ASITA 2021. Communications in Computer and Information Science, vol 1507. Springer, Cham. https://doi.org/10.1007/978-3-030-94426-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94426-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94425-4

  • Online ISBN: 978-3-030-94426-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics