Skip to main content

Multi-agent Pick and Delivery with Capacities: Action Planning Vs Path Finding

  • Conference paper
  • First Online:
Practical Aspects of Declarative Languages (PADL 2022)

Abstract

Motivated by autonomous warehouse applications in the real world, we study a variant of Multi-Agent Path Finding (MAPF) problem where robots also need to pick and deliver some items on their way to their destination. We call this variant the Multi-Agent Pick and Delivery with Capacities (MAPDC) problem. In addition to the challenges of MAPF (i.e., finding collision-free plans for each robot from an initial location to a destination while minimizing the maximum makespan), MAPDC asks also for the allocation of the pick and deliver tasks among robots while taking into account their capacities (i.e., the maximum number of items one robot can carry at a time). We study this problem with two different approaches, action planning vs path finding, using Answer Set Programming with two different computation modes, single-shot vs multi-shot.

This work has been partially supported by Tubitak Grant 118E431.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The effects of an action appear at the same time step as the occurrence of the action, instead of the next time step, to comply with the multi-shot ASP formulation of MAPDC-P explained in the next section.

References

  1. Bartholdi, J.J., III., Hackman, S.T.: Warehouse and distribution science. Supply Chain and Logistics Institute, Georgia Institute of Technology (2019)

    Google Scholar 

  2. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming: an introduction to the special issue. AI Mag. 37(3), 5–6 (2016). https://doi.org/10.1609/aimag.v37i3.2669

    Article  Google Scholar 

  3. Chen, Z., Alonso-Mora, J., Bai, X., Harabor, D.D., Stuckey, P.J.: Integrated task assignment and path planning for capacitated multi-agent pickup and delivery. IEEE RAL 6(3), 5816–5823 (2021). https://doi.org/10.1109/LRA.2021.3074883

    Article  Google Scholar 

  4. Erdem, E., Kisa, D., Oztok, U., Schüller, P.: A general formal framework for pathfinding problems with multiple agents. In: Proceedings of AAAI (2013)

    Google Scholar 

  5. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. TPLP 19(1), 27–82 (2019). https://doi.org/10.1017/S1471068418000054

    Article  MathSciNet  MATH  Google Scholar 

  6. Gebser, M., et al.: Experimenting with robotic intra-logistics domains. TPLP 18(3–4), 502–519 (2018). https://doi.org/10.1017/S1471068418000200

    Article  MathSciNet  Google Scholar 

  7. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9, 365–385 (1991)

    Article  Google Scholar 

  8. Grenouilleau, F., van Hoeve, W.J., Hooker, J.N.: A multi-label A* algorithm for multi-agent pathfinding. In: Proceedings of ICAPS, pp. 181–185 (2019)

    Google Scholar 

  9. Guthrie, C., Fosso-Wamba, S., Arnaud, J.B.: Online consumer resilience during a pandemic: an exploratory study of e-commerce behavior before, during and after a COVID-19 lockdown. JRCS 61, 102570 (2021). https://doi.org/10.1016/j.jretconser.2021.102570

    Article  Google Scholar 

  10. Hönig, W., Kiesel, S., Tinka, A., Durham, J., Ayanian, N.: Conflict-based search with optimal task assignment. In: Proceedings of AAMAS (2018)

    Google Scholar 

  11. Lifschitz, V.: Answer set programming and plan generation. AIJ 138, 39–54 (2002). https://doi.org/10.1016/S0004-3702(02)00186-8

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, M., Ma, H., Li, J., Koenig, S.: Task and path planning for multi-agent pickup and delivery. In: Proceedings of AAMAS, pp. 1152–1160 (2019)

    Google Scholar 

  13. Ma, H., Koenig, S.: Optimal target assignment and path finding for teams of agents. In: Proceedings of AAMAS, pp. 1144–1152 (2016)

    Google Scholar 

  14. Ma, H., Li, J., Kumar, T.K.S., Koenig, S.: Lifelong multi-agent path finding for online pickup and delivery tasks. In: Proceedings of AAMAS, pp. 837–845 (2017)

    Google Scholar 

  15. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.) The Logic Programming Paradigm. Artificial Intelligence. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-60085-2_17

  16. Nguyen, V., Obermeier, P., Son, T.C., Schaub, T., Yeoh, W.: Generalized target assignment and path finding using answer set programming. In: Proceedings of IJCAI, pp. 1216–1223 (2017). https://doi.org/10.24963/ijcai.2017/169

  17. Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. AMAI 25, 241–273 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-agent pathfinding. AIJ 219, 40–66 (2015). https://doi.org/10.1016/j.artint.2014.11.006

    Article  MathSciNet  MATH  Google Scholar 

  19. Surynek, P.: On propositional encodings of cooperative path-finding. In: Proceedings of ICTAI, pp. 524–531 (2012). https://doi.org/10.1109/ICTAI.2012.77

  20. Vodrázka, J., Barták, R., Svancara, J.: On modelling multi-agent path finding as a classical planning problem. In: Proceedings of ICTAI, pp. 23–28 (2020). https://doi.org/10.1109/ICTAI50040.2020.00014

  21. Yu, J., LaValle, S.M.: Optimal multirobot path planning on graphs: complete algorithms and effective heuristics. IEEE TRO 32(5), 1163–1177 (2016). https://doi.org/10.1109/TRO.2016.2593448

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Erdem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tajelipirbazari, N. et al. (2022). Multi-agent Pick and Delivery with Capacities: Action Planning Vs Path Finding. In: Cheney, J., Perri, S. (eds) Practical Aspects of Declarative Languages. PADL 2022. Lecture Notes in Computer Science(), vol 13165. Springer, Cham. https://doi.org/10.1007/978-3-030-94479-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94479-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94478-0

  • Online ISBN: 978-3-030-94479-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics