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Abstract. We present an approach for verification of programs with
shared mutable references against specifications such as assertions, pre-
conditions, postconditions, and read/write effects. We implement our
tool in the Stainless verification system for Scala.
A novelty of our approach is to translate imperative function contracts
(including frame conditions) using quantifier-free formulas in first-order
logic, instead of quantifiers or separation logic. Our quantifier-free encod-
ing enables SMT solvers to both prove safety and to report counterex-
amples relative to the semantics of procedure contracts. Our encoding is
possible thanks to the expressive power of the extended array theory of
de Moura and Bjørner, implemented in the SMT solver Z3, whose map
operators allow us to project heaps before and after the call onto the
declared reads and modifies clauses.
To support inductive proofs about the preservation of invariants, our ap-
proach permits capturing a projection of heap state as a history variable
and evaluating imperative ghost code in the specified captured heap.
We also retain the efficiency of reasoning about purely functional layers
of data structures, which need not be represented using heap references
but often map directly to SMT-LIB algebraic data types and arrays.
We thus obtain a combination of expressiveness for shared mutable data
where needed, while retaining automation for purely functional program
aspects. We illustrate our approach by proving detailed correctness prop-
erties of examples manipulating mutable linked structures.

Keywords: verification · satisfiability modulo theories · shared mutable
data structures · array theories · dynamic frames

1 Introduction

Formal verification of programs with shared mutable data structures is a long-
standing problem. Among the most promising techniques used in today’s ver-
ification tools are separation logic and dynamic frames. Separation logic [33]
with bi-abduction [9] has proved practical; its variant is implemented in the In-
fer tool [12] used by Facebook. It is also a common framework for foundational
semantic-based approaches for reasoning about state inside the Coq proof assis-
tant [20]. On the other hand, we are attracted to dynamic frames [21] because
they are both semantically straightforward and expressive. Tools that embrace
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them, such as Dafny [25], were used to verify complex software systems at Mi-
crosoft [18]. Separation logic and dynamic frames are closely related and one
can view separation logic as a logical framework that infers sets that represent
dynamic frames in certain circumstances, as illustrated by the VeriFast tool [37],
a relationship that was rigorously analyzed in subsequent research [34].

This paper presents an alternative approach for reasoning about mutable
programs and presents its realization in the Stainless verifier [17] for a subset
of the Scala programming language [32]. Like the dynamic frames approach, we
use constrained sets of objects to specify frame conditions. Like Dafny, our tool
uses SMT solvers to establish properties instead of dedicated symbolic execution
for heap-manipulating programs as in several other approaches [5,13,19,30]. We
also model the heap as a function from storage locations to values.

However, our encoding of frame conditions is different from the one in Dafny.
Whereas Dafny makes use of universal quantifiers with triggers to encode frame
conditions (expressing that all non-modified locations remain the same), we
avoid quantifiers and instead use the generalized theory of arrays [29] of Z3.
Notably, this expressive array theory retains completeness guarantees for satis-
fiability checking of quantifier-free formulas even in the presence of model-based
theory combination [27] with other decidable theories. Thanks to our new encod-
ing and the decision procedures of Z3, our verification tool can report meaning-
ful counterexamples for invalid properties, even in those cases where the bodies
of methods are abstracted by their modifies clauses. In contrast, SMT solvers
either refuse to report counterexamples to satisfiability for formulas with uni-
versal quantifiers, or permit extraction of assignments that may or may not be
witnesses to satisfiability. Unlike Dafny, which reduces programs to a guarded-
command language Boogie [3], our approach reduces imperative code to recur-
sive functional programs that manipulate data types supported by the Z3 SMT
solver [28], building on the existing Stainless infrastructure [17]. While Stain-
less could already deal with imperative constructs [7], the supported fragment
did not permit any aliasing. In contrast, the new encoding we describe enables
Stainless to verify shared mutable data structures.

Our approach reduces verification conditions to functional programs but need
not encode immutable algebraic data types using the heap. Read-only functions
do not return a heap in our encoding, whereas functions that do not read mutable
references do not even take a heap argument. The result is a better verification
experience on a mix of purely functional and mutable code, compared to a more
uniform encoding. This feature enables users to leverage the expressive power
of recursive functional programming in implementation and specification, and
encourages the use of executable specifications. Following this paradigm, we
further allow users to define inductive heap predicates as Boolean-typed recursive
functions. Lemmas about such predicates typically require inductive proofs and
the ability to explicitly relate to states at different program points. We propose
first-class heaps as a solution which provides the necessary fine-grained control
and is readily expressible using our approach.
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Contributions. This paper makes the following contributions:

– We describe a novel translation of frame conditions into quantifier-free for-
mulas of combinatory array logic, yielding a heap encoding that can reliably
produce abstract counterexamples modulo function contracts.

– We show how to soundly incorporate into our approach the notion of first-
class heaps, affording additional flexibility in proving lemmas about inductive
heap predicates, while coming at essentially no additional cost in translation.
First-class heaps also increase our system’s expressive power in that they
enable writing proofs of hyperproperties [10,16,22].

– We integrate our solution into the Stainless verifier. Our implementation
supports imperative and functional features, including higher-order functions
and generics, and uses dynamic frames as a specification mechanism.1

2 First Example: Stack

As a simplest example to illustrate a mix of functional and imperative program-
ming, Figure 1 presents a mutable stack implementation using the textbook
singly-linked list. (The code is valid Scala accepted by the Scala 2.12/2.13 com-
pilation pipeline given appropriate library imports.) The data structure is simple
to specify: a minimal specification would only include reads and modifies clauses,
with bodies of functions themselves serving as specifications.

Figure 1 extends such basic specification by introducing the abstraction func-
tion list and calling it in postconditions (ensuring) to re-state the precise effect
of the function. For instance, the postcondition of push states that list == a ::
old(list), meaning that the result of invoking parameter-less abstraction function
list in the post-state is structurally equivalent (==) to element a cons-ed (::)
with list evaluated in the pre-state (old(list)). The proofs of all these conditions
in push and pop are trivial and our system performs them in a fraction of a
second. The clients can reason about the behavior of stack by referring to the
immutable list, which is suited for inductive proofs, much like such list data types
in proof assistants Coq [6] and Isabelle [31]. Users can create shared references
to such mutable stacks, which goes beyond what was possible with the previous,
unique mutable reference model of Stainless, inherited from Leon [7, Ch. 3].

3 Extended Example: Map on a Tree

Moving to a slightly more complex example, Figure 2 shows a binary tree data
whose interior nodes are immutable but whose leaves are mutable and store
values of generic type T. We support a fragment of Scala with functional features
(such as pure first-class functions) as well as imperative features (mutable fields)

1 Our implementation is part of Stainless (https://github.com/epfl-lara/stainless/)
and can be tested on examples in frontends/benchmarks/full-imperative via the
--full-imperative flag. Artifact available at https://zenodo.org/record/5683321.

https://github.com/epfl-lara/stainless/
https://zenodo.org/record/5683321
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1 case class Stack[T](private var data: List[T]) extends AnyHeapRef {
2 def list = {
3 reads(Set(this))
4 data
5 }
6
7 def push(a: T): Unit = {
8 reads(Set(this))
9 modifies(Set(this))

10 data = a :: data // executable code
11 } ensuring( ⇒ list == a :: old(list))
12
13 def pop: T = {
14 reads(Set(this))
15 require(!list.isEmpty)
16 modifies(Set(this))
17 val n = data.head // executable code
18 data = data.tail // executable code
19 n // executable code
20 } ensuring (res ⇒ res == old(list).head && list == old(list).tail)
21 }

Fig. 1. A mutable stack.

1 case class Cell[T](var value: T) extends AnyHeapRef
2
3 case class Leaf[T](data: Cell[T]) extends Tree[T]
4 case class Branch[T](left: Tree[T], right: Tree[T]) extends Tree[T]
5 sealed abstract class Tree[T] {
6 @ghost def repr: Set[AnyHeapRef] = this match { // all cells in the tree
7 case Leaf(data) ⇒ Set[AnyHeapRef](data)
8 case Branch(left, right) ⇒ left.repr ++ right.repr
9 }

10
11 def tmap(f: T ⇒ T): Unit = { // minimal specification
12 reads(repr)
13 modifies(repr)
14
15 this match {
16 case Leaf(data) ⇒ data.value = f(data.value)
17 case Branch(left, right) ⇒ left.tmap(f); right.tmap(f)
18 }
19 }
20 }

Fig. 2. A tree with mutable leaves and a parallelizable in-place map, including read
and write frame conditions. The ++ symbol denotes union of sets, as in Scala.
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and object-oriented features (traits and dynamic dispatch). For any class, users
explicitly opt into mutability and heap reasoning by inheriting from AnyHeapRef.
For instance, in our example the class Tree inherits from AnyHeapRef. It is also
marked as sealed, indicating that all of Tree’s subclasses are defined locally (as
opposed to Scala’s default behavior of keeping type hierarchies open). In effect,
Tree constitutes an algebraic data type with constructors Leaf and Branch.

Our focus is the method def tmap(f: T ⇒ T) on the Tree class, which ap-
plies an in-place transformation f to all leaf cells. For example, given a tree:
Tree[BigInt], invoking tree.tmap(n ⇒ n + 1) increments the values in all the
leaves of tree by one. The method recursively traverses the tree and updates
all cells upon reaching the leaves.

Verifying Effects. Figure 2 is also a minimally-specified program accepted by our
tool, which automatically verifies the conformance of tmap to its declared effects.
The reads clause indicates that the only mutable references that tmap reads are
given by the value returned from auxiliary function repr, which computes the set
of mutable cells in a given tree. Similarly, modifies indicates that these are the
only sets the method is allowed to modify, which means that all other mutable
objects remain the same after a call to tmap. The @ghost annotation ensures
that the repr function is not accidentally executed, but can only be used in
specifications that are erased at run time.

If we try to omit a reads or modifies clause, or incorrectly define repr to not
descend into subtrees, the tool reports a counterexample state detecting that
the specification reads or modifies is violated, with a message such as

tmap body assertion: reads of Tree.tmap invalid

pointing to an undeclared effect in line 17 of Figure 2.

Counterexamples. Our approach enables the generation of counterexamples on
the basis of function contracts alone. Consider the following test method:

def test[T](t: Tree[T], c: Cell[T], y: T) = {
reads(t.repr ++ Set[AnyHeapRef](c))
modifies(t.repr)

t.tmap(x ⇒ y)
} ensuring( ⇒ c.value == old(c.value))

If we mark tmap using the @opaque annotation to prevent it from being
unfolded and try to verify test, the system reports a counterexample, such as
this one:

Found counter−example:
t: Tree[T] → Leaf[Object](HeapRef(12))
c: HeapRef → HeapRef(12)
y: T → SignedBitvector32(1)
heap0: Map[HeapRef, Object] → {HeapRef(12) →

Cell(Cell[Object](SignedBitvector32(0))), ∗ → SignedBitvector32(2)}
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indicating that, when tmap is approximated with its effects, the ensuring clause
can be violated when tree t contains precisely the reference c.

Tools such as Dafny have difficulties in discovering such counterexamples, as
they rely on an encoding of frame conditions that involves quantifiers. Aiming
for soundness of counterexamples, the underlying SMT solvers may refuse to
produce any output or, in some cases, may produce an assignment that is not
guaranteed to be a model. This limitation is due to the fact that certifying that
a model exists in the presence of general quantifiers is a very difficult problem.
Generalized arrays [29] avoid it by “building in” restricted forms of quantifiers
into the semantics of pointwise (map) operators, improving the predictability.

Verifying Functional Correctness. To illustrate specification of stronger correct-
ness properties, we show that tmap behaves like map on purely functional lists.
This stronger specification of tmap is in the ensuring (postcondition) clause of
the version of tmap in Figure 3 (line 18). The property is interesting because it
gives us assurance of correctness while being able to write code that reuses mem-
ory locations and permits parallelization. The property is expressed by defining
an abstraction function [1] toList that maps the tree into the sequence of ele-
ments stored in its leaf cells. (The purely functional List data type and the map
function on lists are defined in the standard library of Stainless.) To prove the
ensuring clause, it is necessary to introduce a precondition for tmap, expressed
using the construct require(valid). The valid method returns true when all sub-
trees store disjoint cells. The tmap method may then only be called when this
predicate holds. The assertion on line 14 follows directly from valid and expresses
disjointness of the side effects of calls on line 15.

In many cases our tool can automatically prove properties of interest thanks
to SMT solvers and the unfolding algorithm of Stainless. For instance, the valid
method (which we use to establish separation of subtrees) does not depend on
the content of mutable cells, but only on the identity of references. Our tool
checks this independence thanks to the absence of reads and modifies clauses
in the signature of valid. Because it does not depend on mutable state, valid
trivially continues to hold after each invocation of tmap on line 15.

On the other hand, showing complex properties such as functional correct-
ness may require more elaborate reasoning. The first challenge in our example
is to establish on line 16, after the modifications have taken place, the cor-
rectness property we desire for each subtree, i.e., left.toList == oldList1.map(f)
and right.toList == oldList2.map(f). This requires using the heap separation be-
tween left and right (witnessed by valid) to deduce that the two recursive calls
are in fact entirely independent of another. This, in turn, requires taking into
account tmap’s modifies clause, which states that only objects in repr are mod-
ified. In previous works such a clause is encoded in one of two ways. Systems
such as Dafny encode frame axioms as quantified first-order formulas and rely
on triggers to automate their instantiation. In contrast, separation logic verifiers
explicitly control the choice of frame, and thus move the burden of instantia-
tions out of the SMT solver. We propose a third solution, which is to encode the
frame conditions as quantifier-free assumptions in array theory, injected at each
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1 def tmap(f: T ⇒ T): Unit = { // strong specification
2 reads(repr)
3 modifies(repr)
4 require(valid)
5 @ghost val oldList = toList
6
7 this match {
8 case Leaf(data) ⇒
9 data.value = f(data.value)

10 ghost { check(toList == oldList.map(f)) }
11
12 case Branch(left, right) ⇒
13 @ghost val (oldList1, oldList2) = (left.toList, right.toList)
14 assert(left.repr ∩ right.repr == ∅)
15 left.tmap(f); right.tmap(f)
16 ghost { lemmaMapConcat(oldList1, oldList2, f) }; ()
17 }
18 } ensuring ( ⇒ toList == old(toList.map(f))) // main property
19
20 def valid: Boolean = // tree invariant: subtrees store disjoint cells
21 this match {
22 case Leaf(data) ⇒ true
23 case Branch(left, right) ⇒
24 left.repr ∩ right.repr == ∅ &&
25 left.valid && right.valid
26 }
27
28 def toList: List[T] = { // abstraction function
29 reads(repr)
30 this match {
31 case Leaf(data) ⇒ List(data.value)
32 case Branch(left, right) ⇒ left.toList ++ right.toList
33 }
34 }
35
36 def lemmaMapConcat[T, R](xs: List[T], ys: List[T], f: T ⇒ R): Unit = {
37 xs match {
38 case Nil() ⇒ ()
39 case Cons( , xs) ⇒ lemmaMapConcat(xs, ys, f)
40 }
41 } ensuring ( ⇒ xs.map(f) ++ ys.map(f) == (xs ++ ys).map(f))

Fig. 3. Functional correctness of the tmap method including the abstraction function,
the invariant, and a proven lemma about purely functional lists. We use ∩ to display
intersection of sets, and use ∅ for the empty set of heap references Set[AnyHeapRef]().
The ++ symbol denotes concatenation of functional lists and union of sets, as in Scala.
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function call site. Our approach avoids the need for quantifiers, but retains the
automation of SMT solvers.

Despite that automation and the decidability of the generalized array the-
ory, the size and complexity of SMT formulas may overwhelm the solver. In
such cases the user can add auxiliary assertions, e.g., expressed through assert
and check statements in Figure 3. Furthermore, certain properties may require
explicit guidance on inductive proofs when reasoning does not follow the pattern
of functions that are iteratively unfolded. In such cases, we need to introduce
lemmas and prove them using recursion to express inductive arguments, as with
lemmaMapConcat defined in lines 36-41 and instantiated on line 16. This lemmas
is independent of any state reasoning and would naturally fit in a standard list
library. With these specifications and hints in place, our tool successfully verifies
the functional correctness of tmap.

4 First-Class Heaps

For some proofs it is useful to directly refer to and manipulate the heap states at
different points in the program. In our system’s surface language we expose heaps
as first-class values of abstract type Heap, and our standard library contains
several primitives to manipulate such values: a function Heap.get which returns
the current implicit heap, a primitive h.eval(e) which evaluates expression e in the
context of heap h, and the function Heap.unchanged(s, h0, h1) which evaluates
to true iff there exists no object o in the set s: Set[AnyHeapRef] such that heaps
h0 and h1 interpret o differently (in the shallow sense).

For instance, we might want to re-establish an inductive heap predicate after
having modified a node-based data structure:

case class Node(var next: Option[Node]) extends AnyHeapRef

def sll(nodes: List[Node]): Boolean = {
reads(nodes.content.asRefs)
nodes match {

case Cons(node1, rest @ Cons(node2, )) ⇒
node1.next == Some(node2) && sll(rest)

case ⇒ true
} }

In the above example we have a heap type of Nodes with pointers to next nodes
and an inductive heap predicate, sll, witnessing that a given sequence of nodes
forms a singly-linked list. Note that nodes: List[Node] itself is a purely functional
data structure and only present for specification purposes; one would typically
store it as a @ghost variable.

Say we would like to prove that removing the last element of a non-empty
singly-linked list nodes maintains the sll property. This is easy to specify us-
ing our functional abstraction nodes: assuming sll(nodes) holds in the pre-
state, we would like to show that sll(nodes.init) holds in the post-state, where
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.init is a method in the standard library that drops the last element of a
List[T]. When nodes consists of a single element, the property follows imme-
diately, since sll(nodes.init) reduces to sll(Nil) which holds by definition of sll.
On the other hand, if nodes contains at least two elements, we need to mod-
ify the next field of the second-to-last node, i.e., set nodes(nodes.size − 2).next
= None(). In the latter case we effectively want to establish the Hoare triple

{sll(nodes) ∧ F} nodes(nodes.size − 2).next = None() {sll(nodes.init)}
where F is some additional precondition ensuring that the list has at least two
elements, and that all nodes up to the last two are separate from the rest.

// A lemma proving that popping from a SLL maintains singly−linked−ness.
def sllPopLemma(h0: Heap, h1: Heap, nodes: List[Node]): Unit = {

require(
nodes.nonEmpty &&
h0.eval { sll(nodes) } &&
(nodes.size == 1 || (
Heap.unchanged(nodes.init.init.content.asRefs, h0, h1) &&
h1.eval { nodes(nodes.size − 2).next == None() }

)) )
if (nodes.size > 1) sllPopLemma(h0, h1, nodes.tail)
} ensuring ( ⇒ h1.eval { sll(nodes.init) })

Above, sllPopLemma establishes the desired property by explicitly referring to
the pre-state as h0 and the post-state as h1. Its proof proceeds by induction on
nodes, and is mostly automatic; we merely have to invoke the right induction
hypothesis when nodes.size > 1. An implementation of pop would likely resort
to a stronger invariant like distinctness of all objects in nodes, and then invoke
the lemma after the modification as follows

val h0 = Heap.get // Get the pre−state
if (nodes.size > 1) nodes(nodes.size − 2).next = None() // Unlink last element
sllPopLemma(h0, Heap.get, nodes)

along with some hints that deduce F from the stronger invariant (not shown).
In addition, for nodes to be marked @ghost, we would need to maintain
nodes(nodes.size − 2) in a separate non-@ghost variable. Our benchmark suite
includes similar, but more elaborate examples Queue and NodeCycle.

While our current system does not provide as much automation as separation
logic for tree-like data, our approach is not limited to such structures and retains
full flexibility in treating heaps as first-class values. Interestingly, this also enables
us to prove hyperproperties, i.e., properties such as determinism, which involve
multiple heap states. For example, consider the following lemma stating that a
memoized function f : Int ⇒ Int evaluates to the same result in every heap:

def lemmaHeapIsIrrelevant(h0: Heap, h1: Heap, x: Int) = { () }
ensuring ( ⇒ h0.eval { f(x) } == h1.eval { f(x) })

In many cases such lemmas can be proven automatically by our system, as
demonstrated, for instance, by the FibCache benchmark.
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5 Heap Encoding

In the following, we introduce our heap encoding and how it achieves framing
without quantification. Our approach builds upon the existing counterexample-
complete unfolding procedure of the Stainless verifier and exploits the additional
expressive power afforded by combinatory array logic [29], an extended array
theory available in Z3. This use of array combinators for framing is, to the best
of our knowledge, novel. Notably, our encoding allows for a high degree of proof
automation without giving up counterexamples.

Our tool models stateful operations by explicitly reading from and updating
a locally-mutable map that relates each object to its state. In a later trans-
formation step such programs with local mutations are reduced to functional
ones. Each stateful function gains an explicit heap parameter and returns a
new, potentially updated heap along with its regular output. In terms of Scala’s
type system, the heap can be thought of as a map heap of type HeapMap =
Map[HeapRef, Any] where Any is the top type and HeapRef is a data type rep-
resenting an object’s identity. Conceptually, our approach employs a monadic
translation [26, 41] that we partially-evaluate [2], replacing stateful operations
such as reads and writes by pure operations on a map.

5.1 Encoding tmap

We first give an informal explanation of our encoding by the example of the
minimally-specified version of tmap on Tree (the version without postconditions,
shown in Figure 2). In Figure 4 we show the data types after transformation.

We treat heap types, i.e., descendants of AnyHeapRef, like Cell, differently from
immutable types such as Tree. The latter are translated into algebraic data types
in the obvious way (lines 5-7). References to heap types, on the other hand, are
erased to the internal ADT HeapRef that represents locations on the heap (line
1). For instance, the field data: Cell[T] of Leaf becomes dataref: HeapRef (line 6).
Additionally, each heap class like Cell is translated to a single-constructor ADT
that encapsulates an object’s state at a given time, e.g., CellData (line 3).

In Figure 5 we show the encoding of tmap itself. The method is reduced to a
type-parametric function that takes its original argument f, the method receiver
t and a heap parameter h0. The imperative operations in tmap are translated to
functional operations on HeapMap as mentioned above, and the modified heap
is returned along with the original return value. In particular, if the current tree
t is a leaf, then we extract its reference to a cell dataref (line 4) and index the
initial heap h0 at dataref (line 9). Note that since the heap map stores values
of type Any we have to perform a downcast (lines 8-9). This is safe, since we
will only verify well-typed Scala programs, so any such cast will be correct by
construction. In a later type-encoding phase [40] Stainless translates type tests
such as line 8 to conditions in the theory of inductive data types. On line 11
we apply the function f to the old value of data and construct a CellData value
reflecting the new state of data. We then return the updated heap on line 12. In
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1 case class HeapRef(id: BigInt)
2
3 case class CellData[T](value: T)
4
5 sealed abstract class Tree[T]
6 case class Leaf[T](dataref: HeapRef) extends Tree[T]
7 case class Branch[T](left: Tree[T], right: Tree[T]) extends Tree[T]

Fig. 4. The data types of the tmap example in Figure 2 after our encoding.

1 def tmap[T](h0: HeapMap, t: Tree[T], f: T ⇒ T): (Unit, HeapMap) = {
2 val (rs, ms) = (repr(t), repr(t))
3 t match {
4 case Leaf(dataref) ⇒
5 assert(dataref ∈ rs, ”‘data‘ must be in reads set”)
6 assert(dataref ∈ ms, ”‘data‘ must be in modifies set”)
7 val data: CellData = {
8 assume(h0(dataref).isInstanceOf[CellData[T]])
9 h0(dataref).asInstanceOf[CellData[T]]

10 }
11 val data’: CellData = CellData(f(data.value))
12 ((), h0.updated(dataref, data’))
13
14 case Branch(left, right) ⇒
15 val ( , h1) = tmapshim(h0, rs, ms, left, f)
16 tmapshim(h1, rs, ms, right, f)
17 }
18 }
19
20 def tmapshim[T](h0: HeapMap, rd: RSet, md: RSet, t: Tree[T], f: T ⇒ T): (Unit,

HeapMap) = {
21 val (rs, ms) = (repr(t), repr(t))
22 assert(rs ⊆ rd, ”reads set of Tree.tmap”)
23 assert(ms ⊆ md, ”modifies set of Tree.tmap”)
24 val res = tmap(h0, t, f)
25 val resR = tmap(rs.mapMerge(h0, dummyHeap), t, f)
26 assume(res. 1 == resR. 1)
27 assume(res. 2 == ms.mapMerge(resR. 2, res. 2))
28 assume(res. 2 == ms.mapMerge(res. 2, h0))
29 res
30 }

Fig. 5. The result of encoding the minimally-specified tmap method of Figure 2. We
use ⊆ to typeset subsetOf, ∈ for contains, and abbreviate Set[AnyHeapRef] by RSet.
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case the tree t is a Branch we simply perform two recursive calls (lines 15-16),
albeit through the newly-introduced wrapper function tmapshim.

Our encoding achieves modular verification of heap contracts (reads and
modifies) by injecting some additional assertions and assumptions. We bind the
reads and modifies sets (rs and ms) at the top of the function (line 2). For each
object that is read or modified we check that the object is in the respective set
(lines 5-6). For function calls we check that the callee’s reads, resp. modifies,
set is subsumed by the caller’s. We achieve this by invoking a wrapper function
tmapshim, that additionally takes as parameters the domains on which the passed
heap is defined for reads and modifications (rd and md). Within the wrapper we
bind the original function’s reads and modifies sets (line 21), check subsumption
wrt. the domains (lines 22-23) and call the original function tmap (line 24).

Finally, we assume the modular guarantees about tmap wrt. the pre- and
post-state, i.e., its frame conditions: On lines 26-27 we state that the result
of tmap only depends on the reads subset of the heap, whereas on line 28 we
state that the heap resulting from tmap may only have changed on objects in
modifies. For the reads-related frame conditions we depend on a “hypotheti-
cal” application of f to the projected heap rs.mapMerge(h0, dummyHeap), which
contains the state of h0 for all objects in rs and that of dummyHeap elsewhere.
The first assumption thus states that the result computed by f is the same no
matter whether we apply it to h0 or to some other arbitrary (but well-typed)
heap that is only known to agree on the valuations of objects in rs. The second
assumption states the analogous property about the locations that might have
been modified by f. Finally, the third assumption expresses that the pre-state
equals the post-state in all locations but those in the modifies clause, i.e., the
set ms.

The crucial component of our encoding here is the mapMerge primitive,
which can be seen as a ternary operator of type ∀ K V. Set[K] ⇒ Map[K,V] ⇒
Map[K,V] ⇒ Map[K,V]. Specifically, mapMerge takes a set s along with two maps
m1, m2 and produces a map m’ = s.mapMerge(m1, m2) such that ∀ k:K. (k ∈ s
→ m’[k] = m1[k]) ∧ (k 6∈ s → m’[k] = m2[k]). We will discuss how mapMerge is
translated to Z3’s extended array theory in Section 5.3.

5.2 Translation Rules

We now describe the general translation rules as applied in our system. We will
consider only a subset of the language supported, focussing on constructs of
particular interest in the translation (shown in Figure 6).

We distinguish the terms t and types T of the surface language from those of
the language after encoding. The surface language comprises of both (immutable)
algebraic data types D and (mutable) heap types C, along with terms for field
reads t.f and updates t.f := t, which are interpreted as either functional or imper-
ative operations, depending on whether the receiver is an ADT or a heap type.
In the lowered language the latter are always interpreted functionally, and the
only imperative feature available are locally-mutable variables let var x = t in t
and assignments thereof, x := t. Though not discussed here, it is straightforward



Generalized Arrays for Stainless Frames 13

Variables . . . x, y, h, ρ,µ

Surface Language

Types . . . S, T := C | D | Set[T] | AnyHeapRef

Terms . . . t := x | f(t) | let x = t in t | t.f | t.f := t

Functions . . . f := def f(x : T) : S = {reads(t); modifies(t); t}

Lowered Language

Types . . . S, T := D | Set[T] | Map[T, T] | Any | HeapRef

Terms . . . t := x | f(t) | let x = t in t | t.f | t.f := t |
let var x = t in t | x := t |
t [t] | t.update(t, t) | t.mapMerge(t, t) |
t.isInstOf[T] | t.asInstOf[T] |
assume(t); t | assert(t); t

Functions . . . f := def f(x : T) : S = {t}

Fig. 6. Selected terms and types of the languages before and after heap encoding.

to convert programs with local mutation into purely functional ones [7,15]. Our
simplified language also omits first-class functions. In practice, we require them
to be pure, while side-effectful ones can be encoded using abstract classes with
heap contracts (see Task in Figure 10 for an example).

At its heart, our translation turns imperative operations on heap types
C1,C2, . . . into functional operations on a map representing the entire heap.
What should be the key and value types of the heap map? For keys, i.e., the
references in our heap model, we choose an abstract type HeapRef isomorphic
to the natural numbers, but with equality as its only operation. For values, i.e.,
the state of individual objects, we pick the top type Any as the trivial solution
which subsumes the representations of all heap types. While SMT solvers do not
directly support subtyping, this is convenient in Stainless, as we can leverage
its existing support for subtyping and Any [40]. Our design differs from that
supported by the Boogie verifier, whose type system provides higher-rank map
types [24] in which the heap map may be typed as ∀T. Map[Ref[T], T], avoiding
the need for (correct-by-construction) downcasts and an additional type encod-
ing phase to deal with the Any type.

Due to our choice of heap representation, the lowered language includes maps
and type-tests to express various assumptions about the heap that are correct
by construction. For maps, we use t [tk] to denote indexing and t.update(tk, tv)
to denote the (functional) result of updating a map t at key tk. To recover in-
formation from Any-typed values, we provide t.isInstOf[T] to express type tests
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and t.asInstOf[T] for the corresponding downcasts. Furthermore, assume(t); t
and assert(t); t mark assumptions and assertions to be used during VC gener-
ation. Combining these constructs, we can express a downcast of t to T that
is assumed correct as let x = t1 in assume(x.isInstOf[T]); t2{x 7→ x.asInstOf[T]},
which we abbreviate by let x = t1 as T in t2. As in the example in Section 5.1,
we take HeapMap and RSet to be shorthands for Map[HeapRef, Any] and
Set[HeapRef], respectively.

We define two translation relations that take types T, resp. well-typed terms
t, and produce their lowered counterparts. The translation relation for types,
T . T′, witnesses the erasure of type T to T′; for instance, if Cell is a heap type,
then Set[Cell] . Set[HeapRef]. The translation relation for terms is notated as
h, ρ,µ;Γ ` t . t′ and depends on a locally-mutable heap variable h, its reads and
modifies domains, ρ and µ, and the typing environment Γ . When implicitly clear
or the same in all occurrences, we omit h, ρ, µ and Γ and simply write t . t′. We
assume the existence of a typing relation Γ ` t : T and also omit Γ when it is
clear from the context.

The encoding proceeds by translating each definition of an ADT D, heap type
C, or function f in the surface program to a corresponding lowered definition.
The data type definitions of the encoded program are obtained by taking all of
the ADT definitions D with argument types erased by T . T′, and additionally
introducing one single-constructor ADT for each heap type C (also with its field
types erased). We refer to the resulting lowered ADTs as DD and DC. For each
function definition def f(x : T) : S = {reads(tρ); modifies(tµ); t} in the original
program we introduce two functions f and fshim in the encoded program. The
encoded function f takes the pre-state as an additional argument, and returns
the resulting post-state along with its result value, yielding

def f(h0 : HeapMap, x : T′) : (S′, HeapMap) = {let ρ = t′ρ in let µ = t′µ in t′}

where h0, ρ,µ;Γ0 ` t . t′, as well as h0, ρ, ∅;Γ0 ` ts . t
′
s for s ∈ {ρ,µ}, Γ0 = x : T,

T.T′ and S.S′. Its companion, fshim, encapsulates both the assumption of frame
conditions and the checking of the associated heap contracts at each call site of f:

def fshim(h0 : HeapMap, ρdom : RSet, µdom : RSet, x : T′) : (S′, HeapMap) = {
let ρ = t′ρ in let µ = t′µ in

assert(ρ ⊆ ρdom); assert(µ ⊆ µdom);

let yres = f(h0, x) in

let yresR = f(ρ.mapMerge(h0, dummyHeap), x) in

assume(yres. 1 = yresR. 1);

assume(yres. 2 = µ.mapMerge(yresR. 2, yres. 2));

assume(yres. 2 = µ.mapMerge(yres. 2, h0));

yres

}
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As an optimization, we omit the parts of the encoding that relate to the post-
state when the modifies clause is empty. When the reads clause is empty as well,
we avoid changing the function’s signature altogether, so that pure functions
remain pure.

The crucial rules of t.t′ are listed in Figure 7. Both FieldReadI and Field-
UpdateI deal with field accesses of immutable data types and do not require
interaction with the heap. In general, pure constructs are left untouched and
their translation rules merely map over subexpressions. Imperative constructs,
on the other hand, read or modify the locally-mutable heap h and refer to ρ and
µ to enforce the heap contracts. For instance, FieldReadM handles field reads
from a heap type C. It translates a read t.f to an assertion that the receiver ob-
ject is in the reads set (t′ ∈ ρ), after which the object state is read from the heap
(h [t′]) and downcast to the corresponding lowered data type DC, from which the
actual value is then projected (x.f). The rule for function calls, Call, merely
rewrites invocations of f to invocations of fshim, passing in the current heap h
and the domains on which the callee is permitted to read and modify the heap.
We always inline these shim functions, so the assertions in fshim are effectively
lifted to each call site of f and ensure that the reads and modifies clauses of the
callee is subsumed by the caller’s.

5.3 Quantifier-Free Frame Conditions

In the previous subsection we assumed a language construct called mapMerge
that made it straightforward to express the necessary frame conditions. The cru-
cial question that remains is how to lower mapMerge and its arguments to an
efficiently decidable theory supported by an SMT solver. Our solution is to target
the theory of (infinite, extensional) arrays in Z3, leveraging the fact that Stainless
translates both sets and maps to such arrays. This means that reads and modi-
fies expressions of type Set[HeapRef] become arrays typed HeapRef⇒ Boolean,
while heap maps of type Map[HeapRef, Any] are translated to HeapRef⇒ Any.
We can then use the array combinator mapf (a1, . . . , an) to express mapMerge
efficiently. This array combinator is part of Z3’s extended array theory [29] and
axiomatized as ∀i. mapf (a1, . . . , an)[i] = f(a1[i], . . . , an[i]). While the combina-
tor can in practice only be applied to built-in functions, this is sufficient for our
purposes: Given Stainless’ encoding of sets and maps, one can use the if-then-else
function ite of Z3, and translate s.mapMerge(m1,m2) as mapite([s], [m1], [m2]).

5.4 First-Class Heaps

A benefit of our encoding is that it naturally extends to explicit reasoning about
alternative heap states within the program logic. Since our heaps are merely
Maps, we can consider contexts with multiple heaps and express hyperproper-
ties like determinism. Compare this to verifiers based on imperative languages,
where relational verification requires constructions such as self-composition and
product programs, limiting the applicability of existing toolchains [4, 14].
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t . t′ t : D

t.f . t′.f
(FieldReadI)

t1 . t′1 t2 . t′2 t1 : D

t1.f := t2 . t′1.f := t′2
(FieldUpdateI)

t . t′ t : C x is fresh

t.f . assert(t′ ∈ ρ); let x = h [t′] as DC in x.f
(FieldReadM)

t1 . t′1 t2 . t′2 t1 : C x is fresh

t1.f := t2 .
assert(t′1 ∈ ρ ∩ µ); let x = h [t′1] as DC in

h := h.update(t′1, (x.f := t′2))

(FieldUpdateM)

t . t′ x is fresh

f(t) . let x = fshim(h, ρ,µ, t′) in h := x. 2; x. 1
(Call)

Fig. 7. Basic rules of the term translation relation h, ρ,µ;Γ ` t . t′. We abbreviate the
relation as t . t′, since the omitted arguments are merely passed through by the above
rules. The form let x = t1 as T in t2 is syntactic sugar for downcasts (see Section 5.2).

Types . . . S, T := . . . | Heap

Terms . . . t := . . . | Heap.get | t.eval(t) | Heap.unchanged(t, t, t)

Heap.get . ρ.mapMerge(h, dummyHeap)
(HeapGet)

th . t′h h′ is fresh h′, U, U;Γ ` te . t′e

th.eval(te) . let var h′ = t′h in t′e
(HeapEval)

ts . t′s th1 . t′h1 th2 . t′h2

Heap.unchanged(ts, th1, th2) . t′h1 = t′s.mapMerge(t′h2, t′h1)
(HeapUnchanged)

Fig. 8. Syntax of the surface language with first-class heaps and related term transla-
tion rules. The symbol U denotes the universal set of all HeapRefs.

The syntax extensions related to first-class heaps are shown in Figure 8
alongside the additional translation rules. The type translation simply erases
Heap . HeapMap. All of the new constructs are straightforward to encode in
our scheme. Heap.get exposes the currently readable heap (HeapGet). We re-
duce th.eval(te) to translating te in the context of a fresh heap variable initialized
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Benchmark #LoC #VCs T C HC

Empty 10 0 6.3 0.0 0.0
AllocatorMono 73 80 12.8 4.1 0.8
ArraySimple 38 16 7.6 0.6 0.2
CellArraySimple 21 9 7.2 0.4 0.1
FibCache 38 32 11.1 2.8 0.3
MutList 81 148 46.2 35.4 2.2
MutListSetsOnly 45 54 30.3 22.4 1.4
NodeCycle 72 69 12.0 4.0 0.2
Queue 190 290 36.6 20.5 3.6
Stack 66 62 10.5 2.6 0.7
StackSimple (Fig. 1) 27 26 8.3 1.1 0.1
TaskParallel 46 38 8.3 1.1 0.2
TaskParallelBasic 58 51 8.6 1.2 0.2
TraitsReadsWrites 39 33 7.8 0.8 0.2
TreeImmutMapGeneric (Fig. 3) 55 33 17.1 8.3 0.2
UpCounter 48 32 8.0 0.9 0.2

Fig. 9. Evaluation results. For each benchmark we list the # of verification conditions
discharged, the # lines of Scala code (including annotations), the total runtime T, the
time spent checking VCs C, and the particular amount of time spent on VCs of heap
contracts HC. Timings are given in seconds.

to th (HeapEval). Notably, during this translation we do not inject any fur-
ther checks of reads and modifies by setting ρ and µ to the sentinel value U
(denoting the universal set). While the lack of checks allows for reads outside a
heap’s original domain, they are well-defined (i.e., they equal the dummyHeap
on those locations). Finally, Heap.unchanged(ts, th1, th2) translates to an equality
that holds iff for all objects in ts the heaps th1 and th2 agree. The correspond-
ing lowering rule HeapUnchanged leverages mapMerge in a way similar to our
encoding of frame conditions. Namely, we take t′s.mapMerge(t′h2, t′h1) (the heap
which interprets all objects as t′h1, except those in t′s, which it interprets as in
t′h2), and require that it equals t′h1 itself.

6 Evaluation

We used our system to verify a number of benchmarks ranging in size and com-
plexity. Among the examples we developed are both shallowly and deeply muta-
ble data structures, a model of an object allocator, and a parallelization primitive
for the fork-join model. In Figure 9 we summarize these benchmarks quantita-
tively in terms of total lines of code, and the time our system takes to verify the
example. In particular, we report T, the total wall time elapsed when running
an individual benchmark, which includes the time it takes the Scala compiler to
process both our standard library and the benchmark, our extraction pipeline
to lower from imperative Scala code to the functional fragment, and the time
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spent on generating and checking verification conditions. The latter component
is reported separately as C, and the time thereof spent on checking heap con-
tracts as HC. The reported numbers were obtained on a machine with an AMD
Ryzen 3700X 8-core CPU @ 3.6GHz and 32GB of RAM running Ubuntu 20.04,
and using Z3 version 4.8.12. We explicitly list an empty benchmark that entails
no verification conditions, but provides a baseline for the time spent on JVM
startup, and, more importantly, extraction through the traditional Scala com-
pilation pipeline plus various lowerings in Stainless before the actual generation
and solving of VCs. We next discuss our experience using the tool and elaborate
on some of the benchmarks listed.

Shallowly-Mutable Data Structures. We first consider “shallowly-mutable” data
structures such as Cell[T] seen in Section 3 whose mutable data is stored directly
in its fields, i.e., without any indirection. They provide a simple baseline for
our system and play an important role as building blocks for larger data struc-
tures such as trees and arrays with fine-grained separation properties. However,
shallowly-mutable data structures are useful in their own right: For instance, we
implemented UpCounter which tracks a monotonically increasing variable and
maintains an invariant relative to the counter’s initial value. We also imple-
mented a simple array (ArraySimple) and stack (StackSimple) which essentially
act as wrappers around functional data structures in that they only store the ref-
erence to the head of an immutable list. For instance, ArraySimple[T] consists of a
single mutable field var list: List[T]. In our examples we show safety wrt. bounds
checks and non-emptyness when popping an element off the stack. We found
that our system easily deals with this kind of mutability, requiring no additional
proof hints whatsoever, in particular since the associated operations typically
require no recursion through stateful functions, making them straightforward to
verify and invalidate with counter-examples.

Mutable Linked Lists and Queues. As an example of a more complex data
structure we implemented multiple variations of a mutable, acyclic, singly-linked
list. We focussed on an append operation, which takes two valid linked lists l1
and l2 with disjoint representations and concatenates them, leaving l1 in a valid
state. This is challenging in a system without a built-in notion of lists or trees,
since establishing the well-formedness of lists (e.g., the absence of cycles) requires
knowledge of heap separation and an inductive proof that maintains the property
for intermediate nodes.

We considered several options to track a node’s representation repr. One
could express repr as a recursive function as in Section 3, or, instead, as a muta-
ble @ghost field on each node. In our benchmarks we present two variants of the
latter approach: MutList encodes the ghost field repr as List[AnyHeapRef], which
has the added benefit of allowing predicates like valid to recurse on the represen-
tation, and can be converted to a Set[AnyHeapRef] as required by our reads and
modifies clauses. MutListSetsOnly instead implements repr as Set[AnyHeapRef],
whose encoded form requires no further conversion to interact with the mapMerge
primitive we use for framing.
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1 abstract class Task {
2 @ghost def readSet: Set[AnyHeapRef]
3 @ghost def writeSet: Set[AnyHeapRef] = { ??? } ensuring ( ⊆ readSet)
4
5 def run(): Unit = { reads(readSet); modifies(writeSet); ??? : Unit }
6 }
7
8 def parallel(task1: Task, task2: Task): Unit = {
9 reads(task1.readSet ++ task2.readSet)

10 modifies(task1.writeSet ++ task2.writeSet)
11 require((task1.writeSet ∩ task2.readSet == ∅) &&
12 (task2.writeSet ∩ task1.readSet == ∅))
13 task1.run(); task2.run() // task1 and task2 complete before this function returns
14 }

Fig. 10. An interface for asynchronous computations and a sequential specification for
fork-join parallelism. The ??? denotes unimplemented code in abstract classes.

We used a similar approach to implement Queue, which provides constant-
time enqueue and dequeue methods using references to the first and last nodes.
Given a valid queue we prove that enqueue and dequeue maintain validity and are
functionally correct with respect to a serialized representation similar to toList
in Section 3. The example demonstrates how safety properties can be established
even in the presence of sharing and arbitrarily deep data structures.

The NodeCycle example illustrates how to define the inductive heap predicate
for a cyclic list. We also establish that the prepend operation on such a list
maintains cyclicity. Both this and the aforementioned example leverage first-
class heaps to carry out the inductive proofs showing that the corresponding
heap predicates continue to hold after modifications to the data structure.

Slices and Monolithic Arrays. Arrays are one of the most common data struc-
tures found in imperative code and thus a worthwhile target for verification.
When specifying algorithms involving arrays it often pays to introduce slices,
i.e., subarrays, as a means of abstraction. By extending the ArraySimple exam-
ple we arrived at ArraySlice which provides safe indexing, update and re-slicing
operations wrt. an underlying array. In the absence of sharing, this solution of
encapsulating all array state in a single “monolithic” mutable heap object (the
underlying array) is the natural and practical choice.

Fork-Join Parallelism. Since dynamic frames in our system are simply given
by read-only expressions, users may define their own imperative abstractions.
For instance, in TaskParallel we demonstrate how one can specify a primitive
modelling fork-join parallelism. Figure 10 shows an excerpt introducing the Task
interface that encapsulates an asynchronous computation and declares the set
of heap objects that may be read and modified in the process. Further below we
define the parallel(t1, t2) construct [23] itself, imposing a number of restrictions:
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Firstly, callers of parallel have to establish accessibility to both t1 and t2’s frames
(lines 9-10). Secondly, we require that the read set of t1 is disjoint from t2’s write
set and vice-versa (lines 11-12). This separation property justifies replacing our
sequential model of parallel by a more efficient runtime implementation executing
the two tasks concurrently. Users can define new asynchronous tasks by imple-
menting Task. Operations such as those on cell-based data structures discussed
above are straightforward to parallelize in this way. Our introductory example of
Section 3 could be parallelized by defining a new class TMapTask[T](t: Tree[T],
f: T ⇒ T) whose run method calls tmap, and replacing the recursive calls in tmap
by parallel(TMapTask(left, f), TMapTask(right, f)).

7 Conclusions

We have presented an approach that extends the Stainless verifier with support
for shared mutable data. Our goal was to preserve as much as possible certain
features of Stainless that we consider useful: the ability to reason about purely
functional programs efficiently and the ability to report counterexamples. Our
strategy to report counterexamples is to avoid the use of quantifiers. This is by
no means the only possibility, as witnessed by the success of approaches that
use them effectively. Yet we believe that the use of decision procedures in the
long term results in a more predictable verification experience than direct use of
general quantifiers. Our experiments suggest that the approach holds promise,
even though the performance of map operators indicates that they nonetheless
require non-trivial reasoning in the Z3 solver.

An integration of insights from verifiers and proof frameworks based on sep-
aration logic is a promising direction to potentially improve usability of our
approach. SMT-LIB notations and competitions for separation logic [36] are
likely to be a useful resource for this task, even if these benchmarks typically
do not focus on reasoning about as detailed functional correctness properties as
our examples. Another direction for improving automation is inductive reason-
ing, both for separation logic predicates themselves [39] and for pure recursive
functions [35].

In conclusion, our paper makes the initial case for an approach that is se-
mantically simple and promises to be predictable. We hope that it will motivate
both the SMT solver builders and verification tool builders to work jointly to
improve the performance, the predictability, and the ability to report counterex-
amples for verification, with array theories being among the most promising
future directions [8, 11,29,38].
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