Skip to main content

BGC: Multi-agent Group Belief with Graph Clustering

  • Conference paper
  • First Online:
Distributed Artificial Intelligence (DAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13170))

Included in the following conference series:

Abstract

Recent advances have witnessed that value decomposed-based multi-agent reinforcement learning methods make an efficient performance in coordination tasks. Most current methods assume that agents can communicate to assist decisions, which is impractical in some real situations. In this paper, we propose an observation-to-cognition method to enable agents to realize high efficient coordination without communication. Inspired by the neighborhood cognitive consistency (NCC), we introduce the group concept to help agents learn a belief, a type of consensus, to realize that adjacent agents tend to accomplish similar sub-tasks to achieve cooperation. We propose a novel agent structure named Belief in Graph Clustering (BGC) via Graph Attention Network (GAT) to generate agent group belief. In this module, we further utilize an MLP-based module to characterize special agent features to express the unique characteristics of each agent. Besides, to overcome the consistent agent problem of NCC, a split loss is introduced to distinguish different agents and reduce the number of groups. Results reveal that the proposed method makes excellent coordination and achieves a significant improvement in the SMAC benchmark. Due to the group concept, our approach maintains excellent performance with an increase in the number of agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 38(2), 156–172 (2008)

    Google Scholar 

  2. Cui, J., Liu, Y., Nallanathan, A.: Multi-agent reinforcement learning-based resource allocation for UAV networks. IEEE Trans. Wirel. Commun. 19(2), 729–743 (2019)

    Article  Google Scholar 

  3. Ding, Z., Huang, T., Lu, Z.: Learning individually inferred communication for multi-agent cooperation. arXiv preprint arXiv:2006.06455 (2020)

  4. Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)

  5. Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Counterfactual multi-agent policy gradients. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  6. Foerster, J.N., Assael, Y.M., de Freitas, N., Whiteson, S.: Learning to communicate with deep multi-agent reinforcement learning. CoRR abs/1605.06676 (2016). http://arxiv.org/abs/1605.06676

  7. Ha, D., Dai, A., Le, Q.V.: Hypernetworks. arXiv preprint arXiv:1609.09106 (2016)

  8. Hüttenrauch, M., Sosic, A., Neumann, G.: Guided deep reinforcement learning for swarm systems. CoRR abs/1709.06011 (2017). http://arxiv.org/abs/1709.06011

  9. Jiang, J., Dun, C., Lu, Z.: Graph convolutional reinforcement learning for multi-agent cooperation. CoRR abs/1810.09202 (2018). http://arxiv.org/abs/1810.09202

  10. Laurens, V.D.M., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(2605), 2579–2605 (2008)

    MATH  Google Scholar 

  11. Liu, Y., Wang, W., Hu, Y., Hao, J., Chen, X., Gao, Y.: Multi-agent game abstraction via graph attention neural network. In: AAAI, pp. 7211–7218 (2020)

    Google Scholar 

  12. Long, Q., Zhou, Z., Gupta, A., Fang, F., Wu, Y., Wang, X.: Evolutionary population curriculum for scaling multi-agent reinforcement learning. arXiv preprint arXiv:2003.10423 (2020)

  13. Mao, H., et al.: Neighborhood cognition consistent multi-agent reinforcement learning. arXiv preprint arXiv:1912.01160 (2019)

  14. Oliehoek, F.A., Amato, C., et al.: A Concise Introduction to Decentralized POMDPs, vol. 1. Springer, New York (2016). https://doi.org/10.1007/978-3-319-28929-8

  15. Peng, P., et al.: Multiagent bidirectionally-coordinated nets for learning to play StarCraft combat games. CoRR abs/1703.10069 (2017). http://arxiv.org/abs/1703.10069

  16. Rashid, T., Samvelyan, M., de Witt, C.S., Farquhar, G., Foerster, J.N., Whiteson, S.: QMIX: monotonic value function factorisation for deep multi-agent reinforcement learning. CoRR abs/1803.11485 (2018). http://arxiv.org/abs/1803.11485

  17. Son, K., Kim, D., Kang, W.J., Hostallero, D., Yi, Y.: QTRAN: learning to factorize with transformation for cooperative multi-agent reinforcement learning. CoRR abs/1905.05408 (2019). http://arxiv.org/abs/1905.05408

  18. Sunehag, P., et al.: Value-decomposition networks for cooperative multi-agent learning. CoRR abs/1706.05296 (2017). http://arxiv.org/abs/1706.05296

  19. Van Erven, T., Harremos, P.: Rényi divergence and kullback-leibler divergence. IEEE Trans. Inf. Theor. 60(7), 3797–3820 (2014)

    Article  Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need (2017)

    Google Scholar 

  21. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  22. Vinyals, O., et al.: StarCraft II: a new challenge for reinforcement learning. CoRR abs/1708.04782 (2017). http://arxiv.org/abs/1708.04782

  23. Wang, X., Ke, L., Qiao, Z., Chai, X.: Large-scale traffic signal control using a novel multiagent reinforcement learning. IEEE Trans. Cybern. 51(1), 174–187 (2020)

    Article  Google Scholar 

  24. Watanabe, T.: A study on multi-agent reinforcement learning problem based on hierarchical modular fuzzy model. In: 2009 IEEE International Conference on Fuzzy Systems, pp. 2041–2046. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fubiao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, T., Zhang, F., Tang, P., Wang, C. (2022). BGC: Multi-agent Group Belief with Graph Clustering. In: Chen, J., Lang, J., Amato, C., Zhao, D. (eds) Distributed Artificial Intelligence. DAI 2021. Lecture Notes in Computer Science(), vol 13170. Springer, Cham. https://doi.org/10.1007/978-3-030-94662-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94662-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94661-6

  • Online ISBN: 978-3-030-94662-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics