Skip to main content

WiBFall: A Device-Free Fall Detection Model for Bathroom

  • Conference paper
  • First Online:
Mobile Networks and Management (MONAMI 2021)

Abstract

Falling detection, especially for elderly people in confined areas such as bathrooms is vital for timely rescue. The mainstream vision-based fall detection approaches however are not applicable here for strong privacy concerns. It is therefore necessary to design a privacy-preserving fall detection model that utilizes other signals such as widely existed Wi-Fi for this scenario. Existing Wi-Fi based fall detection approaches often suffer from environment noise removal, resulting in moderate accuracy. In this paper, a Wi-Fi based fall detection model for bathroom environment, termed WiBFall, is proposed. Firstly, time series CSI data is reconstructed into a two-dimensional frequency energy map structure to obtain more feature capacity. Secondly, the reconstructed CSI data stream is filtered by Butterworth filter for noise elimination. Finally, the filtered data is used to train the established deep learning network to get a high accuracy fall detection model for bathroom. The experimental results show that the WiBFall not only reaches a fall detection accuracy of up to 99.63% in home bathroom environment, but also enjoys high robustness comparing to other schemes in different bathroom settings.

Supported by National Natural Science Foundation of China under Grant 61972092, Collaborative Innovation Major Project of Zhengzhou under Grant 20XTZX06013,the Research Foundation Plan in Higher Education Institutions of Henan Province under Grant 21A520043

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, K., Chen, Y., Gao, Z., et al.: The effect of plantar perception training on the balance ability and fall risk of elderly people with a history of falls. Chin Gen. Pract. 023(012), 1504–1508 (2020)

    Google Scholar 

  2. Bahl, P., Padmanabhan, V.: Radar: an in-building RF-based user location and tracking system. In: Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No. 00CH37064), vol. 2, pp. 775–784 (2000)

    Google Scholar 

  3. Zeng, Y., Pathak, P., Mohapatra, P.: WiWho: wifi-based person identification in smart spaces. In: 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp. 1–12 (2016)

    Google Scholar 

  4. Wang, W., Liu, A., Shahzad, M.: Gait recognition using wifi signals. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 363–373 (2016)

    Google Scholar 

  5. Zhang, J., Wei, B., Hu, W., et al.: Wifi-id: Human identification using wifi signal. In: 2016 International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 75–82 (2016)

    Google Scholar 

  6. Liu, X., Cao, J., Tang, S., et al.: Wi-sleep: Contactless sleep monitoring via wifi signals. In: 2014 IEEE Real-Time Systems Symposium, pp. 346–355 (2014)

    Google Scholar 

  7. Cao, Y., Wang, F., Lu, X., et al.: Contactless body movement recognition during sleep via WiFi signals. IEEE Internet Things J. 7(3), 2028–2037 (2019)

    Article  Google Scholar 

  8. Gu, Y., Zhang, X., Liu, Z., et al.: WiFi-based real-time breathing and heart rate monitoring during sleep. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2019)

    Google Scholar 

  9. Wang, Y., Wu, K., Ni, L.: Wifall: Device-free fall detection by wireless networks. IEEE Trans. Mob. Comput. 16(2), 581–594 (2016)

    Article  Google Scholar 

  10. Wang, H., Zhang, D., Wang, Y., et al.: RT-Fall: A real-time and contactless fall detection system with commodity WiFi devices. IEEE Trans. Mob. Comput. 16(2), 511–526 (2016)

    Article  Google Scholar 

  11. Huang, M., Liu, J., Zhang, Y., et al.: Passive fall monitoring method based on wireless channel status information. J. Comput. Appl. 39(5), 1528–1533 (2019)

    Google Scholar 

  12. Ramezani, R., Xiao, Y., Naeim, A.: Sensing-Fi: Wi-Fi CSI and accelerometer fusion system for fall detection. In: 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pp. 402–405 (2018)

    Google Scholar 

  13. Palipana, S., Rojas, D., Agrawal, P., et al.: FallDeFi: Ubiquitous fall detection using commodity Wi-Fi device. Proc. ACM Interact. Mobile Wearable Ubiquit. Technol. 1(4), 1–25 (2018)

    Article  Google Scholar 

  14. Jin, F., Sengupta, A., Cao, S.: MmFall: fall detection using 4-D MmWave Radar and a Hybrid Variational RNN AutoEncoder. IEEE Trans. Auto. Sci. Eng. 1–13 (2020)

    Google Scholar 

  15. Su, B.Y., et al.: Radar placement for fall detection: signature and performance. J. Ambient Intell. Smart Environ. 10(1), 21–34 (2018)

    Google Scholar 

  16. Chen, Z., Wang, Y., et al.: Infrared-ultrasonic sensor fusion for support vector machine-based fall detection. J. Intell. Mater. Syst. Struct. 29(9), 2027–2039 (2018)

    Google Scholar 

  17. Fan, X., Zhang, H., Leung, C., Shen, Z.: Fall detection with unobtrusive infrared array sensors. In: Lee, S., Ko, H., Oh, S. (eds.) MFI 2017. LNEE, vol. 501, pp. 253–267. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90509-9_15

    Chapter  Google Scholar 

  18. Li, Q., Qu, H., Liu, Z., et al.: AF-DCGAN: Amplitude feature deep convolutional GAN for fingerprint construction in indoor localization systems. IEEE Trans. Emerg. Topics Comput. Intell. 5(3), 468–480 (2021)

    Article  Google Scholar 

  19. Gu, Y., Wang, Y., Liu, T., et al.: EmoSense: computational intelligence driven emotion sensing via wireless channel data. IEEE Trans. Emerg. Topics Comput. Intell. 4(3), 216–226 (2019)

    Article  Google Scholar 

  20. Yang, Z., Zhou, Z., Liu, Y.: From RSSI to CSI: indoor localization via channel response. ACM Comput. Surv. 46(2), 1–32 (2013)

    Article  Google Scholar 

  21. Duan, P., Zhou, Z., Wang, C., et al.: WiNet: A gait recognition model suitable for wireless sensing scenes. J. Xi’an Jiaotong Univ. 54(07), 187–195 (2020)

    Google Scholar 

  22. Xin, T., Guo, B., Wang, Z., et al.: Freesense: Indoor human identification with Wi-Fi signals. In: 2016 IEEE Global Communications Conference, IEEE, pp. 1–7 (2016)

    Google Scholar 

  23. Chen, Z., Zhang, L., Jiang, C., et al.: WiFi CSI based passive human activity recognition using attention based BLSTM. IEEE Trans. Mob. Comput. 18(11), 2714–2724 (2018)

    Article  Google Scholar 

  24. Ohara, K., Maekawa, T., Matsushita, Y.: Detecting state changes of indoor everyday objects using Wi-Fi channel state information. Proc. ACM Interact. Mobile Wear. Ubiquit. Technol. 1(3), 1–28 (2017)

    Article  Google Scholar 

  25. Pokkunuru, A., Jakkala, K., Bhuyan, A., et al.: NeuralWave: gait-based user identification through commodity WiFi and deep learning. In: IECON 2018–44th Annual Conference of the IEEE Industrial Electronics Society, IEEE, pp.758–765 (2018)

    Google Scholar 

  26. Gu, Y., Zhang, X., Liu, Z., et al.: BeSense: leveraging WiFi channel data and computational intelligence for behavior analysis. IEEE Comput. Intell. Mag. 14(4), 31–41 (2019)

    Article  Google Scholar 

  27. Gu, Y., Yan, H., Dong, M., et al.: WiONE: one-shot learning for environment-robust device-free user authentication via commodity Wi-Fi in man-machine system. IEEE Trans. Comput. Soc. Syst. 8(3), 630–642 (2021)

    Article  Google Scholar 

  28. Yu, Z., Xia, Z., Wang, Z., et al.: User identification method based on action sequence monitoring in indoor WiFi environment. Northwestern Polytechnical University, China. CN201710608840.X (2020)

    Google Scholar 

  29. Cao, Y., Wang, F., Lu, X., et al.: Contactless body movement recognition during sleep via WiFi signals. IEEE Internet of Things J. 7(3), 2028–2037 (2019)

    Google Scholar 

  30. Duan, P., Li, H., Zhang, B., et al.: APFNet: Amplitude-phase fusion network for CSI-based action recognition. Mobile Netw. Appl. 6, 1–11(2021)

    Google Scholar 

  31. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  32. He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangjie Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duan, P., Li, J., Jiao, C., Cao, Y., Kong, J. (2022). WiBFall: A Device-Free Fall Detection Model for Bathroom. In: Calafate, C.T., Chen, X., Wu, Y. (eds) Mobile Networks and Management. MONAMI 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-030-94763-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94763-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94762-0

  • Online ISBN: 978-3-030-94763-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics