Abstract
Falling detection, especially for elderly people in confined areas such as bathrooms is vital for timely rescue. The mainstream vision-based fall detection approaches however are not applicable here for strong privacy concerns. It is therefore necessary to design a privacy-preserving fall detection model that utilizes other signals such as widely existed Wi-Fi for this scenario. Existing Wi-Fi based fall detection approaches often suffer from environment noise removal, resulting in moderate accuracy. In this paper, a Wi-Fi based fall detection model for bathroom environment, termed WiBFall, is proposed. Firstly, time series CSI data is reconstructed into a two-dimensional frequency energy map structure to obtain more feature capacity. Secondly, the reconstructed CSI data stream is filtered by Butterworth filter for noise elimination. Finally, the filtered data is used to train the established deep learning network to get a high accuracy fall detection model for bathroom. The experimental results show that the WiBFall not only reaches a fall detection accuracy of up to 99.63% in home bathroom environment, but also enjoys high robustness comparing to other schemes in different bathroom settings.
Supported by National Natural Science Foundation of China under Grant 61972092, Collaborative Innovation Major Project of Zhengzhou under Grant 20XTZX06013,the Research Foundation Plan in Higher Education Institutions of Henan Province under Grant 21A520043
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liu, K., Chen, Y., Gao, Z., et al.: The effect of plantar perception training on the balance ability and fall risk of elderly people with a history of falls. Chin Gen. Pract. 023(012), 1504–1508 (2020)
Bahl, P., Padmanabhan, V.: Radar: an in-building RF-based user location and tracking system. In: Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No. 00CH37064), vol. 2, pp. 775–784 (2000)
Zeng, Y., Pathak, P., Mohapatra, P.: WiWho: wifi-based person identification in smart spaces. In: 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), pp. 1–12 (2016)
Wang, W., Liu, A., Shahzad, M.: Gait recognition using wifi signals. In: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 363–373 (2016)
Zhang, J., Wei, B., Hu, W., et al.: Wifi-id: Human identification using wifi signal. In: 2016 International Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 75–82 (2016)
Liu, X., Cao, J., Tang, S., et al.: Wi-sleep: Contactless sleep monitoring via wifi signals. In: 2014 IEEE Real-Time Systems Symposium, pp. 346–355 (2014)
Cao, Y., Wang, F., Lu, X., et al.: Contactless body movement recognition during sleep via WiFi signals. IEEE Internet Things J. 7(3), 2028–2037 (2019)
Gu, Y., Zhang, X., Liu, Z., et al.: WiFi-based real-time breathing and heart rate monitoring during sleep. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2019)
Wang, Y., Wu, K., Ni, L.: Wifall: Device-free fall detection by wireless networks. IEEE Trans. Mob. Comput. 16(2), 581–594 (2016)
Wang, H., Zhang, D., Wang, Y., et al.: RT-Fall: A real-time and contactless fall detection system with commodity WiFi devices. IEEE Trans. Mob. Comput. 16(2), 511–526 (2016)
Huang, M., Liu, J., Zhang, Y., et al.: Passive fall monitoring method based on wireless channel status information. J. Comput. Appl. 39(5), 1528–1533 (2019)
Ramezani, R., Xiao, Y., Naeim, A.: Sensing-Fi: Wi-Fi CSI and accelerometer fusion system for fall detection. In: 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), pp. 402–405 (2018)
Palipana, S., Rojas, D., Agrawal, P., et al.: FallDeFi: Ubiquitous fall detection using commodity Wi-Fi device. Proc. ACM Interact. Mobile Wearable Ubiquit. Technol. 1(4), 1–25 (2018)
Jin, F., Sengupta, A., Cao, S.: MmFall: fall detection using 4-D MmWave Radar and a Hybrid Variational RNN AutoEncoder. IEEE Trans. Auto. Sci. Eng. 1–13 (2020)
Su, B.Y., et al.: Radar placement for fall detection: signature and performance. J. Ambient Intell. Smart Environ. 10(1), 21–34 (2018)
Chen, Z., Wang, Y., et al.: Infrared-ultrasonic sensor fusion for support vector machine-based fall detection. J. Intell. Mater. Syst. Struct. 29(9), 2027–2039 (2018)
Fan, X., Zhang, H., Leung, C., Shen, Z.: Fall detection with unobtrusive infrared array sensors. In: Lee, S., Ko, H., Oh, S. (eds.) MFI 2017. LNEE, vol. 501, pp. 253–267. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90509-9_15
Li, Q., Qu, H., Liu, Z., et al.: AF-DCGAN: Amplitude feature deep convolutional GAN for fingerprint construction in indoor localization systems. IEEE Trans. Emerg. Topics Comput. Intell. 5(3), 468–480 (2021)
Gu, Y., Wang, Y., Liu, T., et al.: EmoSense: computational intelligence driven emotion sensing via wireless channel data. IEEE Trans. Emerg. Topics Comput. Intell. 4(3), 216–226 (2019)
Yang, Z., Zhou, Z., Liu, Y.: From RSSI to CSI: indoor localization via channel response. ACM Comput. Surv. 46(2), 1–32 (2013)
Duan, P., Zhou, Z., Wang, C., et al.: WiNet: A gait recognition model suitable for wireless sensing scenes. J. Xi’an Jiaotong Univ. 54(07), 187–195 (2020)
Xin, T., Guo, B., Wang, Z., et al.: Freesense: Indoor human identification with Wi-Fi signals. In: 2016 IEEE Global Communications Conference, IEEE, pp. 1–7 (2016)
Chen, Z., Zhang, L., Jiang, C., et al.: WiFi CSI based passive human activity recognition using attention based BLSTM. IEEE Trans. Mob. Comput. 18(11), 2714–2724 (2018)
Ohara, K., Maekawa, T., Matsushita, Y.: Detecting state changes of indoor everyday objects using Wi-Fi channel state information. Proc. ACM Interact. Mobile Wear. Ubiquit. Technol. 1(3), 1–28 (2017)
Pokkunuru, A., Jakkala, K., Bhuyan, A., et al.: NeuralWave: gait-based user identification through commodity WiFi and deep learning. In: IECON 2018–44th Annual Conference of the IEEE Industrial Electronics Society, IEEE, pp.758–765 (2018)
Gu, Y., Zhang, X., Liu, Z., et al.: BeSense: leveraging WiFi channel data and computational intelligence for behavior analysis. IEEE Comput. Intell. Mag. 14(4), 31–41 (2019)
Gu, Y., Yan, H., Dong, M., et al.: WiONE: one-shot learning for environment-robust device-free user authentication via commodity Wi-Fi in man-machine system. IEEE Trans. Comput. Soc. Syst. 8(3), 630–642 (2021)
Yu, Z., Xia, Z., Wang, Z., et al.: User identification method based on action sequence monitoring in indoor WiFi environment. Northwestern Polytechnical University, China. CN201710608840.X (2020)
Cao, Y., Wang, F., Lu, X., et al.: Contactless body movement recognition during sleep via WiFi signals. IEEE Internet of Things J. 7(3), 2028–2037 (2019)
Duan, P., Li, H., Zhang, B., et al.: APFNet: Amplitude-phase fusion network for CSI-based action recognition. Mobile Netw. Appl. 6, 1–11(2021)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Duan, P., Li, J., Jiao, C., Cao, Y., Kong, J. (2022). WiBFall: A Device-Free Fall Detection Model for Bathroom. In: Calafate, C.T., Chen, X., Wu, Y. (eds) Mobile Networks and Management. MONAMI 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-030-94763-7_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-94763-7_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-94762-0
Online ISBN: 978-3-030-94763-7
eBook Packages: Computer ScienceComputer Science (R0)