Skip to main content

Machine Learning Enhanced CPU-GPU Simulation Platform for 5G System

  • Conference paper
  • First Online:
Mobile Networks and Management (MONAMI 2021)

Abstract

The exponential growth of mobile terminals and the explosion of data volume are promoting the continuous evolution of mobile communication network and also increasing the complexity of the system. Meanwhile, 5G system-level simulation also requires more complex operations and more data processing. Conventional system simulation platform based on CPU can not satisfy the computing power requirement of system-level simulation of 5G. For tremendously shorten the execution time, we proposed to develop the CPU-GPU based parallelization platform, which adopts Logistic Regression algorithm to optimizing the use of computational resources. Numerical results demonstrate the effectiveness in terms of reducing execution time and guaranteeing reliability of system-level simulation result in 5G scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 3rd Generation Partnership Project (3GPP): NR; NR and NG-RAN Overall Description; Stage-2 (Release 15), 3GPP TS 38.300 V15.12.0 (2021)

    Google Scholar 

  2. 3rd Generation Partnership Project (3GPP): Study on New Radio Access Technology; Radio access architecture and interfaces (Release 14), 3GPP TS 38.801 V14.0.0 (2017)

    Google Scholar 

  3. 3rd Generation Partnership Project (3GPP): Study on Scenarios and Requirements for Next Generation Access Technologies (Release 14), 3GPP TS 38.913 V14.3.0 (2017)

    Google Scholar 

  4. International Telecommunication Union (ITU): Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond, ITU-R M.2083-0 (2015)

    Google Scholar 

  5. Cho, S., Chae, S., Rim, M., Kang, C.G.: System level simulation for 5G cellular communication systems. In: International Conference on Ubiquitous and Future Networks 2017, Milan, Italy, pp. 1–4. IEEE (2017)

    Google Scholar 

  6. Hwang, I., Song, B., Soliman, S.S.: A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Commun. Mag. 51(6), 20–27 (2013)

    Article  Google Scholar 

  7. Ge, X., Tu, S., Mao, G., Wang, C., Han, T.: 5G ultra-dense cellular networks. IEEE Wirel. Commun. 23(1), 72–79 (2016)

    Article  Google Scholar 

  8. Dhiyagu, D., Shanmughasundaram, R.: Dependency and utilization aware task allocation for multi-core embedded processors. In: 2019 Innovations in Power and Advanced Computing Technologies, Vellore, India, pp. 1–5. IEEE (2019)

    Google Scholar 

  9. Jian-zhen, C., Bin, L., Dan-ping, S.: The multi-core CPU parallel computation for CFD simulation of flowmeter. In: 2008 International Symposium on Information Science and Engineering, Shanghai, China, pp. 367–370. IEEE (2008)

    Google Scholar 

  10. Singh, T., Srivastava, D.K., Aggarwal, A.: A novel approach for CPU utilization on a multicore paradigm using parallel quicksort. In: Proceedings of 3rd International Conference on Computational Intelligence & Communication Technology, Ghaziabad, India, pp. 1–6. IEEE (2017)

    Google Scholar 

  11. Yao, W., Li, J., Tan, B., Hao, S.: Interference management scheme of ultra dense network based on clustering. In: Proceedings of IEEE 2nd Information Technology, Chengdu, China, pp. 374–377. IEEE (2017)

    Google Scholar 

  12. Jin, S., et al.: Understanding GPU-based lossy compression for extreme-scale cosmological simulations. In: 34th IEEE International Parallel and Distributed Processing Symposium, New Orleans, LA, USA, pp. 105–115. IEEE (2020)

    Google Scholar 

  13. Huang, Y., Li, Y., Zhang, Z., Liu, R.W.: GPU-accelerated compression and visualization of large-scale vessel trajectories in maritime IoT industries. IEEE Internet Things J. 7, 10794–10812 (2020)

    Article  Google Scholar 

  14. Di, Y., Weiyi, S., Ke, S., Zibo, L.: A high-speed digital signal hierarchical parallel processing architecture based on CPU-GPU platform. In: Proceedings of IEEE 17th International Conference on Communication Technology, Chengdu, China, pp. 355–358. IEEE (2017)

    Google Scholar 

  15. Raju, K., Chiplunkar, N.N., Rajanikanth, K.: A CPU-GPU cooperative sorting approach. In: 2019 Innovations in Power and Advanced Computing Technologies, Vellore, India, pp. 1–5. IEEE (2019)

    Google Scholar 

  16. Xu, T., Zhou, T., Tian, J., Sang, J., Hu, H.: Intelligent spectrum sensing: when reinforcement learning meets automatic repeat sensing in 5G communications. IEEE Wirel. Commun. 27(1), 46–53 (2020)

    Article  Google Scholar 

  17. Sang, J., Zhou, T., Xu, T., Jin, Y., Zhu, Z.: Deep learning based predictive power allocation for V2X communication. IEEE Access 9, 72881–72893 (2021)

    Article  Google Scholar 

  18. Shang, X., Hu, H., Li, X., Xu, T., Zhou, T.: Dive into deep learning based automatic modulation classification: a disentangled approach. IEEE Access 8, 113271–113284 (2020)

    Article  Google Scholar 

  19. He, D., Ai, B., Guan, K., Wang, L., Zhong, Z., Kürner, T.: The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: a tutorial. IEEE Commun. Surv. Tutor. 21(1), 10–27 (2019)

    Article  Google Scholar 

  20. Xu, T., Zhang, M., Zhou, T.: Statistical signal transmission technology: a novel perspective for 5G enabled vehicular networking. IEEE Wirel. Commun. 24(6), 22–29 (2017)

    Article  MathSciNet  Google Scholar 

  21. Zhou, T., Xu, B., Xu, T., Hu, H., Lei, X.: User-specific link adaptation scheme for device-to-device network coding multicast. IET Commun. 9(3), 367–374 (2015)

    Article  Google Scholar 

  22. Li, K., Xu, J., Yang, Y.: System simulation modeling and key technology evaluation in 5G. ZTE Technol. J. 22(3), 41–46 (2016)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Program of Shanghai Academic/Technology Research Leader (No. 21XD1433700), the Science and Technology Commission Foundation of Shanghai (No. 20DZ1101200), and the Youth Innovation Promotion Association of CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ouyang, Y., Yin, C., Zhou, T., Jin, Y. (2022). Machine Learning Enhanced CPU-GPU Simulation Platform for 5G System. In: Calafate, C.T., Chen, X., Wu, Y. (eds) Mobile Networks and Management. MONAMI 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-030-94763-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94763-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94762-0

  • Online ISBN: 978-3-030-94763-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics