Skip to main content

Modern AI/ML Methods for Healthcare: Opportunities and Challenges

  • Conference paper
  • First Online:
Distributed Computing and Intelligent Technology (ICDCIT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13145))

  • 870 Accesses

Abstract

Artificial Intelligence has seen a significant resurgence in the past decade in wide ranging technology and domain areas. Recent progress in digitisation and high influx of biomedical data have led to an unparalleled success of Machine Learning systems in healthcare, which is perceived to be a possible game changer for ‘healthcare to all’. This article gives an account of some of the current applications of AI solutions in the medical domains of diagnosis, prognosis and treatment. The article will also illustrate the implications of AI in the fight against the COVID-19 pandemic. Lastly, the article will summarise the challenges AI currently faces in its wide-scale adoption in the healthcare industry and how they can possibly be dealt with to move towards a more intelligent medical future. This may enable moving towards quality healthcare for all.

A. Garg and V. V. Venkataramani—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, E.D., et al.: Improving risk prediction in heart failure using machine learning. Eur. J. Heart Fail. 22(1), 139–147 (2020)

    Article  Google Scholar 

  2. Ajay, S., Deshpande, P.: Preventive readmission in hospitals using machine learning. In: 2020 IEEE International Conference for Innovation in Technology (INOCON), pp. 1–5. IEEE (2020)

    Google Scholar 

  3. Akella, A., Akella, S.: Machine learning algorithms for predicting coronary artery disease: efforts toward an open source solution. Future Sci. OA 7(6), FSO698 (2021)

    Article  Google Scholar 

  4. Alfalahi, H., Renda, F., Stefanini, C.: Concentric tube robots for minimally invasive surgery: current applications and future opportunities. IEEE Trans. Med. Robot. Bionics 2(3), 410–424 (2020)

    Article  Google Scholar 

  5. Alle, S., Priyakumar, U.D.: Linear prediction residual for efficient diagnosis of Parkinson’s disease from gait. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 614–623. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_59

    Chapter  Google Scholar 

  6. Alle, S., et al.: COVID-19 risk stratification and mortality prediction in hospitalized Indian patients. medRxiv (2020)

    Google Scholar 

  7. AlSagri, H.S., Ykhlef, M.: Machine learning-based approach for depression detection in Twitter using content and activity features. IEICE Trans. Inf. Syst. 103(8), 1825–1832 (2020)

    Article  Google Scholar 

  8. Álvarez, J.D., Matias-Guiu, J.A., Cabrera-Martín, M.N., Risco-Martín, J.L., Ayala, J.L.: An application of machine learning with feature selection to improve diagnosis and classification of neurodegenerative disorders. BMC Bioinform. 20(1), 1–12 (2019). https://doi.org/10.1186/s12859-019-3027-7

    Article  Google Scholar 

  9. Aly, M., Rahouma, K.H., Ramzy, S.M.: Pay attention to the speech: COVID-19 diagnosis using machine learning and crowdsourced respiratory and speech recordings. Alexandria Eng. J. 61(5), 3487–3500 (2021)

    Article  Google Scholar 

  10. Ardabili, S.F., et al.: COVID-19 outbreak prediction with machine learning. Algorithms 13(10), 249 (2020)

    Article  MathSciNet  Google Scholar 

  11. Asif, S., Wenhui, Y.: Automatic detection of COVID-19 using X-ray images with deep convolutional neural networks and machine learning. medRxiv (2020)

    Google Scholar 

  12. Asif, S., Wenhui, Y., Tao, Y., Jinhai, S., Amjad, K.: Real time face mask detection system using transfer learning with machine learning method in the era of COVID-19 pandemic. In: 2021 4th International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 70–75. IEEE (2021)

    Google Scholar 

  13. Aversano, L., Bernardi, M.L., Cimitile, M., Pecori, R.: Early detection of Parkinson disease using deep neural networks on gait dynamics. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  14. Barstugan, M., Ozkaya, U., Ozturk, S.: Coronavirus (COVID-19) classification using CT images by machine learning methods. arXiv preprint arXiv:2003.09424 (2020)

  15. Binol, H., Plotner, A., Sopkovich, J., Kaffenberger, B., Niazi, M.K.K., Gurcan, M.N.: Ros-NET: a deep convolutional neural network for automatic identification of rosacea lesions. Skin Res. Technol. 26(3), 413–421 (2020)

    Article  Google Scholar 

  16. Bobby, J.S., Annapoorani, C.: Analysis of intracranial hemorrhage in CT brain images using machine learning and deep learning algorithm. Ann. Rom. Soc. Cell Biol. 25(6), 13742–13752 (2021)

    Google Scholar 

  17. Boeri, C., et al.: Machine learning techniques in breast cancer prognosis prediction: a primary evaluation. Cancer Med. 9(9), 3234–3243 (2020)

    Article  Google Scholar 

  18. Bolourani, S., et al.: A machine learning prediction model of respiratory failure within 48 hours of patient admission for COVID-19: model development and validation. J. Med. Internet Res. 23(2), e24246 (2021)

    Article  Google Scholar 

  19. Brewer, A.C., et al.: Mobile applications in dermatology. JAMA Dermatol. 149(11), 1300–1304 (2013)

    Article  Google Scholar 

  20. Brunese, L., Mercaldo, F., Reginelli, A., Santone, A.: An ensemble learning approach for brain cancer detection exploiting radiomic features. Comput. Methods Programs Biomed. 185, 105134 (2020)

    Article  Google Scholar 

  21. Buettner, R., Hirschmiller, M., Schlosser, K., Rössle, M., Fernandes, M., Timm, I.J.: High-performance exclusion of schizophrenia using a novel machine learning method on EEG data. In: 2019 IEEE International Conference on E-Health Networking, Application & Services (HealthCom), pp. 1–6. IEEE (2019)

    Google Scholar 

  22. Chabon, J.J., et al.: Integrating genomic features for non-invasive early lung cancer detection. Nature 580(7802), 245–251 (2020)

    Article  Google Scholar 

  23. Cheerla, A., Gevaert, O.: Deep learning with multimodal representation for pancancer prognosis prediction. Bioinformatics 35(14), i446–i454 (2019)

    Article  Google Scholar 

  24. Christe, A., et al.: Computer-aided diagnosis of pulmonary fibrosis using deep learning and CT images. Invest. Radiol. 54(10), 627 (2019)

    Article  Google Scholar 

  25. Cohen, J.P., et al.: Predicting COVID-19 pneumonia severity on chest X-ray with deep learning. Cureus 12(7), e9448 (2020)

    Google Scholar 

  26. Dammu, P.S., Bapi, R.S.: Employing temporal properties of brain activity for classifying autism using machine learning. In: Deka, B., Maji, P., Mitra, S., Bhattacharyya, D.K., Bora, P.K., Pal, S.K. (eds.) PReMI 2019. LNCS, vol. 11942, pp. 193–200. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34872-4_22

    Chapter  Google Scholar 

  27. Dammu, P.S., Bapi, R.S.: Temporal dynamics of the brain using variational bayes hidden Markov models: application in autism. In: Deka, B., Maji, P., Mitra, S., Bhattacharyya, D.K., Bora, P.K., Pal, S.K. (eds.) PReMI 2019. LNCS, vol. 11941, pp. 121–130. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34869-4_14

    Chapter  Google Scholar 

  28. Deshpande, M., Rao, V.: Depression detection using emotion artificial intelligence. In: 2017 International Conference on Intelligent Sustainable Systems (ICISS), pp. 858–862. IEEE (2017)

    Google Scholar 

  29. Dos Santos, M.C.T., et al.: miRNA-based signatures in cerebrospinal fluid as potential diagnostic tools for early stage Parkinson’s disease. Oncotarget 9(25), 17455 (2018)

    Article  Google Scholar 

  30. Emuoyibofarhe, J.O., Ajisafe, D., Babatunde, R.S., Christoph, M.: Early skin cancer detection using deep convolutional neural networks on mobile smartphone. Int. J. Inf. Eng. Electron. Bus. 12(2), 21–27 (2020)

    Google Scholar 

  31. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  32. Flenady, V., et al.: Major risk factors for stillbirth in high-income countries: a systematic review and meta-analysis. The Lancet 377(9774), 1331–1340 (2011)

    Article  Google Scholar 

  33. Gomes, P.: Surgical robotics: reviewing the past, analysing the present, imagining the future. Robot. Comput.-Integr. Manuf. 27(2), 261–266 (2011)

    Article  Google Scholar 

  34. Gustafson, E., Pacheco, J., Wehbe, F., Silverberg, J., Thompson, W.: A machine learning algorithm for identifying atopic dermatitis in adults from electronic health records. In: 2017 IEEE International Conference on Healthcare Informatics (ICHI), pp. 83–90. IEEE (2017)

    Google Scholar 

  35. Hatib, F., et al.: Machine-learning algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology 129(4), 663–674 (2018)

    Article  Google Scholar 

  36. Hussain, L., et al.: Detecting congestive heart failure by extracting multimodal features and employing machine learning techniques. BioMed Res. Int. 2020 (2020). Article ID: 4281243

    Google Scholar 

  37. Islam, M.R., Kabir, M.A., Ahmed, A., Kamal, A.R.M., Wang, H., Ulhaq, A.: Depression detection from social network data using machine learning techniques. Health Inf. Sci. Syst. 6(1), 1–12 (2018). https://doi.org/10.1007/s13755-018-0046-0

    Article  Google Scholar 

  38. Islam, M., Jose, V.J.M., Ren, H.: Glioma prognosis: segmentation of the tumor and survival prediction using shape, geometric and clinical information. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 142–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_13

    Chapter  Google Scholar 

  39. Jiang, H., et al.: Machine learning-based models to support decision-making in emergency department triage for patients with suspected cardiovascular disease. Int. J. Med. Inform. 145, 104326 (2021)

    Article  Google Scholar 

  40. Jnawali, K., Arbabshirani, M.R., Rao, N., Patel, A.A.: Deep 3D convolution neural network for CT brain hemorrhage classification. In: Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575, p. 105751C. International Society for Optics and Photonics (2018)

    Google Scholar 

  41. Karthikeyan, A., Garg, A., Vinod, P., Priyakumar, U.D.: Machine learning based clinical decision support system for early COVID-19 mortality prediction. Front. Public Health 9, 626697 (2021)

    Article  Google Scholar 

  42. Kassania, S.H., Kassanib, P.H., Wesolowskic, M.J., Schneidera, K.A., Detersa, R.: Automatic detection of coronavirus disease (COVID-19) in X-ray and CT images: a machine learning based approach. Biocybern. Biomed. Eng. 41(3), 867–879 (2021)

    Article  Google Scholar 

  43. Khuriwal, N., Mishra, N.: Breast cancer detection from histopathological images using deep learning. In: 2018 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE), pp. 1–4. IEEE (2018)

    Google Scholar 

  44. Kim, Y.J., Han, S.S., Yang, H.J., Chang, S.E.: Prospective, comparative evaluation of a deep neural network and dermoscopy in the diagnosis of onychomycosis. PLoS ONE 15(6), e0234334 (2020)

    Article  Google Scholar 

  45. Klang, E., et al.: Promoting head CT exams in the emergency department triage using a machine learning model. Neuroradiology 62(2), 153–160 (2020). https://doi.org/10.1007/s00234-019-02293-y

    Article  Google Scholar 

  46. Kong, G., Lin, K., Hu, Y.: Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU. BMC Med. Inform. Decis. Mak. 20(1), 1–10 (2020). https://doi.org/10.1186/s12911-020-01271-2

    Article  Google Scholar 

  47. Lai, Y.H., Chen, W.N., Hsu, T.C., Lin, C., Tsao, Y., Wu, S.: Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning. Sci. Rep. 10(1), 1–11 (2020)

    Article  Google Scholar 

  48. Liu, L., Zhao, S., Chen, H., Wang, A.: A new machine learning method for identifying Alzheimer’s disease. Simul. Model. Pract. Theory 99, 102023 (2020)

    Article  Google Scholar 

  49. Loey, M., Manogaran, G., Taha, M.H.N., Khalifa, N.E.M.: A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Measurement 167, 108288 (2021)

    Article  Google Scholar 

  50. Ludwig, N., et al.: Machine learning to detect Alzheimer’s disease from circulating non-coding RNAs. Genomics Proteomics Bioinform. 17(4), 430–440 (2019)

    Article  Google Scholar 

  51. Lugli, G., et al.: Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PLoS ONE 10(10), e0139233 (2015)

    Article  Google Scholar 

  52. Lui, T.K., Cheung, K.S., Lui, K.L.: Machine learning models in the prediction of one-year mortality in patients with advanced hepatocellular cancer on immunotherapy. SSRN 3885156 (2021)

    Google Scholar 

  53. Lundberg, S.M., et al.: Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2(10), 749–760 (2018)

    Article  Google Scholar 

  54. Mahmud, T., et al.: CovTANet: a hybrid tri-level attention-based network for lesion segmentation, diagnosis, and severity prediction of COVID-19 chest CT scans. IEEE Trans. Ind. Inform. 17(9), 6489–6498 (2020)

    Article  Google Scholar 

  55. Malacova, E., et al.: Stillbirth risk prediction using machine learning for a large cohort of births from Western Australia, 1980–2015. Sci. Rep. 10(1), 1–8 (2020)

    Article  Google Scholar 

  56. Mohammed, E.A., Keyhani, M., Sanati-Nezhad, A., Hejazi, S.H., Far, B.H.: An ensemble learning approach to digital corona virus preliminary screening from cough sounds. Sci. Rep. 11(1), 1–11 (2021)

    Article  Google Scholar 

  57. Monk, A., et al.: Perinatal deaths in Australia 1993–2012 (2016)

    Google Scholar 

  58. Morris, R.S., et al.: Predictors of elderly mortality after trauma: a novel outcome score. J. Trauma Acute Care Surg. 88(3), 416–424 (2020)

    Article  MathSciNet  Google Scholar 

  59. Myszczynska, M.A., et al.: Applications of machine learning to diagnosis and treatment of neurodegenerative diseases. Nat. Rev. Neurol. 16(8), 440–456 (2020)

    Article  Google Scholar 

  60. Nie, D., Zhang, H., Adeli, E., Liu, L., Shen, D.: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 212–220. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_25

    Chapter  Google Scholar 

  61. Orabi, A.H., Buddhitha, P., Orabi, M.H., Inkpen, D.: Deep learning for depression detection of Twitter users. In: Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic, pp. 88–97 (2018)

    Google Scholar 

  62. Pahar, M., Klopper, M., Warren, R., Niesler, T.: COVID-19 cough classification using machine learning and global smartphone recordings. Comput. Biol. Med. 135, 104572 (2021)

    Article  Google Scholar 

  63. Pahar, M., Niesler, T.: Machine learning based COVID-19 detection from smartphone recordings: cough, breath and speech. arXiv preprint arXiv:2104.02477 (2021)

  64. Pan, K., Hurault, G., Arulkumaran, K., Williams, H.C., Tanaka, R.J.: EczemaNet: automating detection and severity assessment of atopic dermatitis. In: Liu, M., Yan, P., Lian, C., Cao, X. (eds.) MLMI 2020. LNCS, vol. 12436, pp. 220–230. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59861-7_23

    Chapter  Google Scholar 

  65. Pankratz, D.G., et al.: Usual interstitial pneumonia can be detected in transbronchial biopsies using machine learning. Ann. Am. Thorac. Soc. 14(11), 1646–1654 (2017)

    Article  Google Scholar 

  66. Parikh, R.B., et al.: Machine learning approaches to predict 6-month mortality among patients with cancer. JAMA Netw. Open 2(10), e1915997 (2019)

    Article  MathSciNet  Google Scholar 

  67. Pinter, G., Felde, I., Mosavi, A., Ghamisi, P., Gloaguen, R.: COVID-19 pandemic prediction for Hungary; a hybrid machine learning approach. Mathematics 8(6), 890 (2020)

    Article  Google Scholar 

  68. Porieva, H., Ivanko, K., Semkiv, C., Vaityshyn, V.: Investigation of lung sounds features for detection of bronchitis and COPD using machine learning methods. Visnyk NTUU KPI Seriia-Radiotekhnika Radioaparatobuduvannia (84), 78–87 (2021)

    Google Scholar 

  69. Qu, Z., Liu, Q., Liu, C.: Classification of congestive heart failure with different New York heart association functional classes based on heart rate variability indices and machine learning. Expert. Syst. 36(3), e12396 (2019)

    Article  Google Scholar 

  70. Raita, Y., Goto, T., Faridi, M.K., Brown, D.F., Camargo, C.A., Hasegawa, K.: Emergency department triage prediction of clinical outcomes using machine learning models. Crit. Care 23(1), 1–13 (2019)

    Article  Google Scholar 

  71. Rasheed, J., Hameed, A.A., Djeddi, C., Jamil, A., Al-Turjman, F.: A machine learning-based framework for diagnosis of COVID-19 from chest X-ray images. Interdisc. Sci. Comput. Life Sci. 13(1), 103–117 (2021). https://doi.org/10.1007/s12539-020-00403-6

    Article  Google Scholar 

  72. Razavi-Termeh, S.V., Sadeghi-Niaraki, A., Choi, S.M.: Asthma-prone areas modeling using a machine learning model. Sci. Rep. 11(1), 1–16 (2021)

    Article  Google Scholar 

  73. Rowtula, V., Oota, S., Gupta, M., Surampudi, B.R.: A deep autoencoder for near-perfect fMRI encoding (2018)

    Google Scholar 

  74. Rumpold, H., et al.: Prediction of mortality in metastatic colorectal cancer in a real-life population: a multicenter explorative analysis. BMC Cancer 20(1), 1–9 (2020)

    Article  Google Scholar 

  75. Russell, S., Norvig, P.: Artificial intelligence: a modern approach (2002)

    Google Scholar 

  76. Sato, J.R., Moll, J., Green, S., Deakin, J.F., Thomaz, C.E., Zahn, R.: Machine learning algorithm accurately detects fMRI signature of vulnerability to major depression. Psychiatry Res. Neuroimaging 233(2), 289–291 (2015)

    Article  Google Scholar 

  77. Scheffler, R.M., Liu, J.X., Kinfu, Y., Dal Poz, M.R.: Forecasting the global shortage of physicians: an economic-and needs-based approach. Bull. World Health Organ. 86, 516-523B (2008)

    Article  Google Scholar 

  78. Senturk, Z.K.: Early diagnosis of Parkinson’s disease using machine learning algorithms. Med. Hypotheses 138, 109603 (2020)

    Article  Google Scholar 

  79. Serviá, L., et al.: Machine learning techniques for mortality prediction in critical traumatic patients: anatomic and physiologic variables from the RETRAUCI study. BMC Med. Res. Methodol. 20(1), 1–12 (2020)

    Article  Google Scholar 

  80. Sharma, L.D., Sunkaria, R.K.: Inferior myocardial infarction detection using stationary wavelet transform and machine learning approach. SIViP 12(2), 199–206 (2017). https://doi.org/10.1007/s11760-017-1146-z

    Article  Google Scholar 

  81. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics, 2019. CA: A Cancer J. Clin. 69(1), 7–34 (2019)

    Google Scholar 

  82. Silva, L.A.V., Rohr, K.: Pan-cancer prognosis prediction using multimodal deep learning. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 568–571. IEEE (2020)

    Google Scholar 

  83. Simpraga, S., et al.: EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease. Sci. Rep. 7(1), 1–11 (2017)

    Article  Google Scholar 

  84. Singh, P.K., Krishna, C.M.: Continuum arm robotic manipulator: a review. Univers. J. Mech. Eng. 2(6), 193–198 (2014)

    Article  Google Scholar 

  85. Spathis, D., Vlamos, P.: Diagnosing asthma and chronic obstructive pulmonary disease with machine learning. Health Inform. J. 25(3), 811–827 (2019)

    Article  Google Scholar 

  86. Steardo, L., Jr., et al.: Application of support vector machine on fMRI data as biomarkers in schizophrenia diagnosis: a systematic review. Front. Psychiatry 11, 588 (2020)

    Article  Google Scholar 

  87. Surampudi, S.G., Naik, S., Surampudi, R.B., Jirsa, V.K., Sharma, A., Roy, D.: Multiple kernel learning model for relating structural and functional connectivity in the brain. Sci. Rep. 8(1), 1–14 (2018)

    Article  Google Scholar 

  88. Sweatt, A.J., et al.: Discovery of distinct immune phenotypes using machine learning in pulmonary arterial hypertension. Circ. Res. 124(6), 904–919 (2019)

    Article  Google Scholar 

  89. Swift, A.J., et al.: A machine learning cardiac magnetic resonance approach to extract disease features and automate pulmonary arterial hypertension diagnosis. Eur. Heart J.-Cardiovasc. Imaging 22(2), 236–245 (2021)

    Article  Google Scholar 

  90. Tabibu, S., Vinod, P., Jawahar, C.: Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning. Sci. Rep. 9(1), 1–9 (2019)

    Article  Google Scholar 

  91. Tagaris, A., Kollias, D., Stafylopatis, A., Tagaris, G., Kollias, S.: Machine learning for neurodegenerative disorder diagnosis-survey of practices and launch of benchmark dataset. Int. J. Artif. Intell. Tools 27(03), 1850011 (2018)

    Article  Google Scholar 

  92. Tang, W., Cao, Y., Ma, X.: Novel prognostic prediction model constructed through machine learning on the basis of methylation-driven genes in kidney renal clear cell carcinoma. Biosci. Rep. 40(7), BSR20201604 (2020)

    Article  Google Scholar 

  93. Than, M.P., et al.: Machine learning to predict the likelihood of acute myocardial infarction. Circulation 140(11), 899–909 (2019)

    Article  Google Scholar 

  94. Toğaçar, M., Ergen, B., Cömert, Z., Özyurt, F.: A deep feature learning model for pneumonia detection applying a combination of mRMR feature selection and machine learning models. Irbm 41(4), 212–222 (2020)

    Article  Google Scholar 

  95. Trakadis, Y.J., Sardaar, S., Chen, A., Fulginiti, V., Krishnan, A.: Machine learning in schizophrenia genomics, a case-control study using 5,090 exomes. Am. J. Med. Genet. B Neuropsychiatr. Genet. 180(2), 103–112 (2019)

    Article  Google Scholar 

  96. Tschandl, P., et al.: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet Oncol. 20(7), 938–947 (2019)

    Article  Google Scholar 

  97. Tzimourta, K.D., et al.: Machine learning algorithms and statistical approaches for Alzheimer’s disease analysis based on resting-state EEG recordings: a systematic review. Int. J. Neural Syst. 31(5), 2130002 (2021)

    Article  Google Scholar 

  98. Udrea, A., et al.: Accuracy of a smartphone application for triage of skin lesions based on machine learning algorithms. J. Eur. Acad. Dermatol. Venereol. 34(3), 648–655 (2020)

    Article  Google Scholar 

  99. Umapathy, S., Sampath, M., Nelufer, Srivastava, S.: Automated segmentation and classification of psoriasis hand thermal images using machine learning algorithm. In: Thakkar, F., Saha, G., Shahnaz, C., Hu, Y.C. (eds.) Proceedings of the International e-Conference on Intelligent Systems and Signal Processing. AISC, vol. 1370, pp. 487–496. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-2123-9_37

  100. Vaka, A.R., Soni, B., Reddy, S.: Breast cancer detection by leveraging machine learning. ICT Express 6(4), 320–324 (2020)

    Article  Google Scholar 

  101. Vijayakumar, T.: Classification of brain cancer type using machine learning. J. Artif. Intell. 1(02), 105–113 (2019)

    Google Scholar 

  102. Vivanco, R., Roberts, D.: Predicting patients likely to overstay in hospitals. In: 2011 10th International Conference on Machine Learning and Applications and Workshops, vol. 2, pp. 168–171. IEEE (2011)

    Google Scholar 

  103. Wan, N., et al.: Machine learning enables detection of early-stage colorectal cancer by whole-genome sequencing of plasma cell-free DNA. BMC Cancer 19(1), 1–10 (2019). https://doi.org/10.1186/s12885-019-6003-8

    Article  Google Scholar 

  104. Wang, C., et al.: Development and validation of a predictive model for coronary artery disease using machine learning. Front. Cardiovasc. Med. 8, 43 (2021)

    Google Scholar 

  105. Wang, D., Mo, J., Zhou, G., Xu, L., Liu, Y.: An efficient mixture of deep and machine learning models for COVID-19 diagnosis in chest X-ray images. PLoS ONE 15(11), e0242535 (2020)

    Article  Google Scholar 

  106. Wang, K., et al.: Clinical and laboratory predictors of in-hospital mortality in patients with COVID-19: a cohort study in Wuhan. China. Clin. Infect. Dis. 71(16), 2079–2088 (2020)

    Article  Google Scholar 

  107. Wang, P., Zheng, X., Li, J., Zhu, B.: Prediction of epidemic trends in COVID-19 with logistic model and machine learning technics. Chaos, Solitons Fractals 139, 110058 (2020)

    Article  MathSciNet  Google Scholar 

  108. Wang, Z., Zhu, Y., Li, D., Yin, Y., Zhang, J.: Feature rearrangement based deep learning system for predicting heart failure mortality. Comput. Methods Programs Biomed. 191, 105383 (2020)

    Article  Google Scholar 

  109. Weiss, J.C., Natarajan, S., Peissig, P.L., McCarty, C.A., Page, D.: Machine learning for personalized medicine: predicting primary myocardial infarction from electronic health records. AI Mag. 33(4), 33–33 (2012)

    Google Scholar 

  110. Wheeler, M.: Overview on robotics in the laboratory. Ann. Clin. Biochem. 44(3), 209–218 (2007)

    Article  Google Scholar 

  111. Wijnberge, M., et al.: The use of a machine-learning algorithm that predicts hypotension during surgery in combination with personalized treatment guidance: study protocol for a randomized clinical trial. Trials 20(1), 1–9 (2019)

    Article  Google Scholar 

  112. Yala, A., et al.: Using machine learning to parse breast pathology reports. Breast Cancer Res. Treat. 161(2), 203–211 (2016). https://doi.org/10.1007/s10549-016-4035-1

    Article  Google Scholar 

  113. Yan, L., et al.: An interpretable mortality prediction model for COVID-19 patients. Nat. Mach. Intell. 2(5), 283–288 (2020)

    Article  Google Scholar 

  114. Yuan, Q., et al.: Performance of a machine learning algorithm using electronic health record data to identify and estimate survival in a longitudinal cohort of patients with lung cancer. JAMA Netw. Open 4(7), e2114723 (2021)

    Article  Google Scholar 

  115. Zarrin, P.S., Roeckendorf, N., Wenger, C.: In-vitro classification of saliva samples of COPD patients and healthy controls using machine learning tools. IEEE Access 8, 168053–168060 (2020)

    Article  Google Scholar 

  116. Zhang, L.: EEG signals classification using machine learning for the identification and diagnosis of schizophrenia. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4521–4524. IEEE (2019)

    Google Scholar 

  117. Zhou, M., Zhao, H., Wang, X., Sun, J., Su, J.: Analysis of long noncoding RNAs highlights region-specific altered expression patterns and diagnostic roles in Alzheimer’s disease. Brief. Bioinform. 20(2), 598–608 (2019)

    Article  Google Scholar 

  118. Zoabi, Y., Deri-Rozov, S., Shomron, N.: Machine learning-based prediction of COVID-19 diagnosis based on symptoms. npj Digit. Med. 4(1), 1–5 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

We thank IHub-Data, IIIT Hyderabad for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Deva Priyakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garg, A., Venkataramani, V.V., Karthikeyan, A., Priyakumar, U.D. (2022). Modern AI/ML Methods for Healthcare: Opportunities and Challenges. In: Bapi, R., Kulkarni, S., Mohalik, S., Peri, S. (eds) Distributed Computing and Intelligent Technology. ICDCIT 2022. Lecture Notes in Computer Science(), vol 13145. Springer, Cham. https://doi.org/10.1007/978-3-030-94876-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94876-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94875-7

  • Online ISBN: 978-3-030-94876-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics