Abstract
In social media platforms, a viral information or trending term draws attention, as it asserts potential user content towards topic/terms and sentiment flux. In real-time sentiment analysis, this viral information deliver potential insights, as encompass sentiment and co-located ranges of emotions be useful for the analysis and decision support. A traditional sentiment analysis tool generates the level of predefined sentiments over social media content for the defined duration and lacks in the extraction of emotional impact created by the same. In these settings, it is a multifaceted task to estimate precisely the emotional quotient viral information creates. The proposed novel algorithm aims, to (i) extract the sentiment and co-located emotions quotient of viral information and (ii) utilities for comprehensive comparison on co-occurring viral informations, and sentiment analysis over Twitter text data. The generated emotion quotients and micro-sentiment reveals several valuable insight of a viral topic and assists in decision support. A use-case analysis over real-time extracted data asserts significant insights, as generated sentiments and emotional effects reveals co-relations caused by viral/trending information. The algorithm delivers an efficient, robust, and adaptable solution for the sentiment analysis also.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bikel, D.M., Sorensen, J.: If we want your opinion. In: International conference on semantic computing (ICSC 2007), pp. 493–500 (2007). https://doi.org/10.1109/ICSC.2007.81
Cambria, E., Schuller, B., Xia, Y., Havasi, C.: New avenues in opinion mining and sentiment analysis. IEEE Intell. Syst. 28(2), 15–21 (2013). https://doi.org/10.1109/MIS.2013.30
Chen, R., Xu, W.: The determinants of online customer ratings: a combined domain ontology and topic text analytics approach. Electron. Commer. Res. 17(1), 31–50 (2016). https://doi.org/10.1007/s10660-016-9243-6
Ding, X., Liu, B., Yu, P.S.: A holistic lexicon-based approach to opinion mining. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, pp. 231–240 (2008). https://doi.org/10.1145/1341531.1341561
Esuli, A., Sebastiani, F.: Sentiwordnet: a publicly available lexical resource for opinion mining. In: Proceedings of 5th Language Resources and Evaluation, vol. 6, pp. 417–422 (2006)
Fei, G., Liu, B., Hsu, M., Castellanos, M., Ghosh, R.: A dictionary-based approach to identifying aspects implied by adjectives for opinion mining. In: Proceedings of 24th International Conference on Computational Linguistics, p. 309 (2012)
Feldman, R., Fresco, M., Goldenberg, J., Netzer, O., Ungar, L.: Extracting product comparisons from discussion boards. A model for senti-ment and emotion analysis of unstructured. In: Seventh IEEE International Conference on Data Mining (ICDM 2007), vol. 197, no. 123, pp. 469–474 (2007). https://doi.org/10.1109/ICDM.2007.27.
Godbole, N., Srinivasaiah, M., Skiena, S.: Large-scale sentiment analysis for news and blogs. In: Proceedings of the International Conference on Weblogs and Social Media (ICWSM), vol. 7, no. 21, pp. 219–222 (2007)
Hamouda, A., Rohaim, M.: Reviews classification using sentiwordnet lexicon. In: World Congress on Computer Science and Information Technology (2011)
Jindal, N., Liu, B.: Mining comparative sentences and relations. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 2, pp. 1331–1336 (2006)
Van de Kauter, M., Breesch, D., Hoste, V.: Fine-grained analysis of explicit and implicit sentiment in financial news articles. Expert Syst. Appl. 42(11), 4999–5010 (2015). https://doi.org/10.1016/j.eswa.2015.02.007
Loper, E., Bird, S.: Nltk: The natural language toolkit. arXiv preprint cs/0205028 (2002)
Li, Y., Qin, Z., Xu, W., Guo, J.: A holistic model of mining product aspects and associated sentiments from online reviews. Multimedia Tools Appl. 74(23), 10177–10194 (2015). https://doi.org/10.1007/s11042-014-2158-0
Liu, B.: Sentiment analysis and subjectivity. Handb. Nat. Lang. Process. 2, 627–666 (2010)
Liu, B.: Opinion mining and sentiment analysis. In: Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, pp. 459–526 (2011). https://doi.org/10.1007/978-3-642-19460-3_11
Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012). https://doi.org/10.2200/S00416ED1V01Y201204HLT016
Liu, P., Gulla, J.A., Zhang, L.: Dynamic topic-based sentiment analysis of large-scale online news. In: Cellary, W., Mokbel, M.F., Wang, J., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2016. LNCS, vol. 10042, pp. 3–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48743-4_1
Ma, Y., Chen, G., Wei, Q.: Finding users preferences from large-scale online reviews for personalized recommendation. Electron. Commer. Res. 17(1), 3–29 (2017). https://doi.org/10.1007/s10660-016-9240-9
Mo, S.Y.K., Liu, A., Yang, S.Y.: News sentiment to market impact and its feedback effect. Environ. Syst. Decis. 36(2), 158–166 (2016). https://doi.org/10.1007/s10669-016-9590-9
Montoyo, A., MartíNez-Barco, P., Balahur, A.: Subjectivity and sentiment analysis: an overview of the current state of the area and envisaged developments. Decis. Support Syst. 53(4), 675–679 (2012). https://doi.org/10.1016/j.dss.2012.05.022
Nassirtoussi, A.K., Aghabozorgi, S., Wah, T.Y., Ngo, D.C.L.: Text mining of newsheadlines for forex market prediction: a multi-layer dimension reduction algorithm with semantics and sentiment. Expert Syst. Appl. 42(1), 306–324 (2015). https://doi.org/10.1016/j.eswa.2014.08.004
Ohana, B.: Opinion mining with the sentwordnet lexical resource. M.Sc. Dissertation, Dublin Institute of Technology (2009)
Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, p. 271 (2004). https://doi.org/10.3115/1218955.1218990
Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008). https://doi.org/10.1561/1500000011
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86 (2002). https://doi.org/10.3115/1118693.1118704
Parkhe, V., Biswas, B.: Sentiment analysis of movie reviews: finding most important movie aspects using driving factors. Soft. Comput. 20(9), 3373–3379 (2016). https://doi.org/10.1007/s00500-015-1779-1
Peng, J., Choo, K.K.R., Ashman, H.: Astroturfing detection in social media: using binary n-gram analysis for authorship attribution. In: Proceedings of the 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 2016), pp. 121–1286 (2016)
Peng, J., Choo, K.K.R., Ashman, H.: Bit-level n-gram based forensic authorship analysis on social media: identifying individuals from linguistic profiles. J. Netw. Comput. Appl. 70, 171–182 (2016). https://doi.org/10.1016/j.jnca.2016.04.001
Peng, J., Detchon, S., Choo, K.K.R., Ashman, H.: Astroturfing detection in social media: a binary n-gram-based approach. Concurrency Comput. Pract. Experience 29(17), e4013 (2016). https://doi.org/10.1002/cpe.4013
Pro¨llochs, N., Feuerriegel, S., Neumann, D.: Enhancing sentiment analysis of financial news by detecting negation scopes. In: Proceedings of the 48th Hawaii International Conference on System Sciences (HICSS), pp. 959–968 (2015). https://doi.org/10.1109/HICSS.2015.119
Robinson, R., Goh, T.T., Zhang, R.: Textual factors in online product reviews: a foundation for a more influential approach to opinion mining. Electron. Commer. Res. 12(3), 301–330 (2012). https://doi.org/10.1007/s10660-012-9095-7
Rout, J., Dalmia, A., Choo, K.K.R., Bakshi, S., Jena, S.: Revisiting semi-supervised learning for online deceptive review detection. IEEE Access 5(1), 1319–1327 (2017). https://doi.org/10.1109/ACCESS.2017.2655032
Rout, J., Singh, S., Jena, S., Bakshi, S.: Deceptive review detection using labeled and unlabeled data. Multimedia Tools Appl. 76(3), 3187–3211 (2017). https://doi.org/10.1007/s11042-016-3819-y
Sadegh, M., Ibrahim, R., Othman, Z.A.: Opinion mining and sentiment analysis: a survey. Int. J. Comput. Technol. 2(3), 171–178 (2012)
Song, L., Lau, R.Y.K., Kwok, R.-W., Mirkovski, K., Dou, W.: Who are the spoilers in social media marketing? Incremental learning of latent semantics for social spam detection. Electron. Commer. Res. 17(1), 51–81 (2016). https://doi.org/10.1007/s10660-016-9244-5
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011). https://doi.org/10.1162/COLI_a_00049
Tang, H., Tan, S., Cheng, X.: A survey on sentiment detection of reviews. Expert Syst. Appl. 36(7), 10760–10773 (2009). https://doi.org/10.1016/j.eswa.2009.02.063
Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 417–424 (2002). https://doi.org/10.3115/1073083.1073153
Wang, D., Li, J., Xu, K., Wu, Y.: Sentiment community detection: exploring sentiments and relationships in social networks. Electron. Commer. Res. 17(1), 103–132 (2017). https://doi.org/10.1007/s10660-016-9233-8
Zheng, L., Wang, H., Gao, S.: Sentimental feature selection for sentiment analysis of Chinese online reviews. Int. J. Mach. Learn. Cybern. 9(1), 75–84 (2015). https://doi.org/10.1007/s13042-015-0347-4
Alves, A.L.F.: A spatial and temporal sentiment analysis approach applied to Twitter microtexts. J. Inf. Data Manag. 6, 118 (2015)
Chaabani, Y., Toujani, R., Akaichi, J.: Sentiment analysis method for tracking touristics reviews in social media network. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) KES-IIMSS 2017. SIST, vol. 76, pp. 299–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59480-4_30
Contractor, D.: Tracking political elections on social media: applications and experience. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015
Bai, H., Yu, G.: A Weibo-based approach to disaster informatics: incidents monitor in post-disaster situation via Weibo text negative sentiment analysis. Nat. Hazards 83, 1177–1196 (2016)
Brynielsson, J., Johansson, F., Jonsson, C., Westling, A.: Emotion classification of social media posts for estimating people’s reactions to communicated alert messages during crises. Secur. Inform. 3(1), 1–11 (2014). https://doi.org/10.1186/s13388-014-0007-3
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Kumar, P., Reji, R.E., Singh, V. (2022). Extracting Emotion Quotient of Viral Information Over Twitter. In: Bapi, R., Kulkarni, S., Mohalik, S., Peri, S. (eds) Distributed Computing and Intelligent Technology. ICDCIT 2022. Lecture Notes in Computer Science(), vol 13145. Springer, Cham. https://doi.org/10.1007/978-3-030-94876-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-94876-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-94875-7
Online ISBN: 978-3-030-94876-4
eBook Packages: Computer ScienceComputer Science (R0)