Skip to main content

Extracting Emotion Quotient of Viral Information Over Twitter

  • Conference paper
  • First Online:
Distributed Computing and Intelligent Technology (ICDCIT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13145))

  • 783 Accesses

Abstract

In social media platforms, a viral information or trending term draws attention, as it asserts potential user content towards topic/terms and sentiment flux. In real-time sentiment analysis, this viral information deliver potential insights, as encompass sentiment and co-located ranges of emotions be useful for the analysis and decision support. A traditional sentiment analysis tool generates the level of predefined sentiments over social media content for the defined duration and lacks in the extraction of emotional impact created by the same. In these settings, it is a multifaceted task to estimate precisely the emotional quotient viral information creates. The proposed novel algorithm aims, to (i) extract the sentiment and co-located emotions quotient of viral information and (ii) utilities for comprehensive comparison on co-occurring viral informations, and sentiment analysis over Twitter text data. The generated emotion quotients and micro-sentiment reveals several valuable insight of a viral topic and assists in decision support. A use-case analysis over real-time extracted data asserts significant insights, as generated sentiments and emotional effects reveals co-relations caused by viral/trending information. The algorithm delivers an efficient, robust, and adaptable solution for the sentiment analysis also.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bikel, D.M., Sorensen, J.: If we want your opinion. In: International conference on semantic computing (ICSC 2007), pp. 493–500 (2007). https://doi.org/10.1109/ICSC.2007.81

  2. Cambria, E., Schuller, B., Xia, Y., Havasi, C.: New avenues in opinion mining and sentiment analysis. IEEE Intell. Syst. 28(2), 15–21 (2013). https://doi.org/10.1109/MIS.2013.30

    Article  Google Scholar 

  3. Chen, R., Xu, W.: The determinants of online customer ratings: a combined domain ontology and topic text analytics approach. Electron. Commer. Res. 17(1), 31–50 (2016). https://doi.org/10.1007/s10660-016-9243-6

    Article  Google Scholar 

  4. Ding, X., Liu, B., Yu, P.S.: A holistic lexicon-based approach to opinion mining. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, pp. 231–240 (2008). https://doi.org/10.1145/1341531.1341561

  5. Esuli, A., Sebastiani, F.: Sentiwordnet: a publicly available lexical resource for opinion mining. In: Proceedings of 5th Language Resources and Evaluation, vol. 6, pp. 417–422 (2006)

    Google Scholar 

  6. Fei, G., Liu, B., Hsu, M., Castellanos, M., Ghosh, R.: A dictionary-based approach to identifying aspects implied by adjectives for opinion mining. In: Proceedings of 24th International Conference on Computational Linguistics, p. 309 (2012)

    Google Scholar 

  7. Feldman, R., Fresco, M., Goldenberg, J., Netzer, O., Ungar, L.: Extracting product comparisons from discussion boards. A model for senti-ment and emotion analysis of unstructured. In: Seventh IEEE International Conference on Data Mining (ICDM 2007), vol. 197, no. 123, pp. 469–474 (2007). https://doi.org/10.1109/ICDM.2007.27.

  8. Godbole, N., Srinivasaiah, M., Skiena, S.: Large-scale sentiment analysis for news and blogs. In: Proceedings of the International Conference on Weblogs and Social Media (ICWSM), vol. 7, no. 21, pp. 219–222 (2007)

    Google Scholar 

  9. Hamouda, A., Rohaim, M.: Reviews classification using sentiwordnet lexicon. In: World Congress on Computer Science and Information Technology (2011)

    Google Scholar 

  10. Jindal, N., Liu, B.: Mining comparative sentences and relations. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 2, pp. 1331–1336 (2006)

    Google Scholar 

  11. Van de Kauter, M., Breesch, D., Hoste, V.: Fine-grained analysis of explicit and implicit sentiment in financial news articles. Expert Syst. Appl. 42(11), 4999–5010 (2015). https://doi.org/10.1016/j.eswa.2015.02.007

    Article  Google Scholar 

  12. Loper, E., Bird, S.: Nltk: The natural language toolkit. arXiv preprint cs/0205028 (2002)

    Google Scholar 

  13. Li, Y., Qin, Z., Xu, W., Guo, J.: A holistic model of mining product aspects and associated sentiments from online reviews. Multimedia Tools Appl. 74(23), 10177–10194 (2015). https://doi.org/10.1007/s11042-014-2158-0

    Article  Google Scholar 

  14. Liu, B.: Sentiment analysis and subjectivity. Handb. Nat. Lang. Process. 2, 627–666 (2010)

    Google Scholar 

  15. Liu, B.: Opinion mining and sentiment analysis. In: Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, pp. 459–526 (2011). https://doi.org/10.1007/978-3-642-19460-3_11

  16. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol. 5(1), 1–167 (2012). https://doi.org/10.2200/S00416ED1V01Y201204HLT016

    Article  Google Scholar 

  17. Liu, P., Gulla, J.A., Zhang, L.: Dynamic topic-based sentiment analysis of large-scale online news. In: Cellary, W., Mokbel, M.F., Wang, J., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2016. LNCS, vol. 10042, pp. 3–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48743-4_1

    Chapter  Google Scholar 

  18. Ma, Y., Chen, G., Wei, Q.: Finding users preferences from large-scale online reviews for personalized recommendation. Electron. Commer. Res. 17(1), 3–29 (2017). https://doi.org/10.1007/s10660-016-9240-9

    Article  Google Scholar 

  19. Mo, S.Y.K., Liu, A., Yang, S.Y.: News sentiment to market impact and its feedback effect. Environ. Syst. Decis. 36(2), 158–166 (2016). https://doi.org/10.1007/s10669-016-9590-9

    Article  Google Scholar 

  20. Montoyo, A., MartíNez-Barco, P., Balahur, A.: Subjectivity and sentiment analysis: an overview of the current state of the area and envisaged developments. Decis. Support Syst. 53(4), 675–679 (2012). https://doi.org/10.1016/j.dss.2012.05.022

    Article  Google Scholar 

  21. Nassirtoussi, A.K., Aghabozorgi, S., Wah, T.Y., Ngo, D.C.L.: Text mining of newsheadlines for forex market prediction: a multi-layer dimension reduction algorithm with semantics and sentiment. Expert Syst. Appl. 42(1), 306–324 (2015). https://doi.org/10.1016/j.eswa.2014.08.004

    Article  Google Scholar 

  22. Ohana, B.: Opinion mining with the sentwordnet lexical resource. M.Sc. Dissertation, Dublin Institute of Technology (2009)

    Google Scholar 

  23. Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, p. 271 (2004). https://doi.org/10.3115/1218955.1218990

  24. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008). https://doi.org/10.1561/1500000011

    Article  Google Scholar 

  25. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86 (2002). https://doi.org/10.3115/1118693.1118704

  26. Parkhe, V., Biswas, B.: Sentiment analysis of movie reviews: finding most important movie aspects using driving factors. Soft. Comput. 20(9), 3373–3379 (2016). https://doi.org/10.1007/s00500-015-1779-1

    Article  Google Scholar 

  27. Peng, J., Choo, K.K.R., Ashman, H.: Astroturfing detection in social media: using binary n-gram analysis for authorship attribution. In: Proceedings of the 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 2016), pp. 121–1286 (2016)

    Google Scholar 

  28. Peng, J., Choo, K.K.R., Ashman, H.: Bit-level n-gram based forensic authorship analysis on social media: identifying individuals from linguistic profiles. J. Netw. Comput. Appl. 70, 171–182 (2016). https://doi.org/10.1016/j.jnca.2016.04.001

    Article  Google Scholar 

  29. Peng, J., Detchon, S., Choo, K.K.R., Ashman, H.: Astroturfing detection in social media: a binary n-gram-based approach. Concurrency Comput. Pract. Experience 29(17), e4013 (2016). https://doi.org/10.1002/cpe.4013

  30. Pro¨llochs, N., Feuerriegel, S., Neumann, D.: Enhancing sentiment analysis of financial news by detecting negation scopes. In: Proceedings of the 48th Hawaii International Conference on System Sciences (HICSS), pp. 959–968 (2015). https://doi.org/10.1109/HICSS.2015.119

  31. Robinson, R., Goh, T.T., Zhang, R.: Textual factors in online product reviews: a foundation for a more influential approach to opinion mining. Electron. Commer. Res. 12(3), 301–330 (2012). https://doi.org/10.1007/s10660-012-9095-7

    Article  Google Scholar 

  32. Rout, J., Dalmia, A., Choo, K.K.R., Bakshi, S., Jena, S.: Revisiting semi-supervised learning for online deceptive review detection. IEEE Access 5(1), 1319–1327 (2017). https://doi.org/10.1109/ACCESS.2017.2655032

    Article  Google Scholar 

  33. Rout, J., Singh, S., Jena, S., Bakshi, S.: Deceptive review detection using labeled and unlabeled data. Multimedia Tools Appl. 76(3), 3187–3211 (2017). https://doi.org/10.1007/s11042-016-3819-y

    Article  Google Scholar 

  34. Sadegh, M., Ibrahim, R., Othman, Z.A.: Opinion mining and sentiment analysis: a survey. Int. J. Comput. Technol. 2(3), 171–178 (2012)

    Article  Google Scholar 

  35. Song, L., Lau, R.Y.K., Kwok, R.-W., Mirkovski, K., Dou, W.: Who are the spoilers in social media marketing? Incremental learning of latent semantics for social spam detection. Electron. Commer. Res. 17(1), 51–81 (2016). https://doi.org/10.1007/s10660-016-9244-5

    Article  Google Scholar 

  36. Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexicon-based methods for sentiment analysis. Comput. Linguist. 37(2), 267–307 (2011). https://doi.org/10.1162/COLI_a_00049

    Article  Google Scholar 

  37. Tang, H., Tan, S., Cheng, X.: A survey on sentiment detection of reviews. Expert Syst. Appl. 36(7), 10760–10773 (2009). https://doi.org/10.1016/j.eswa.2009.02.063

    Article  Google Scholar 

  38. Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 417–424 (2002). https://doi.org/10.3115/1073083.1073153

  39. Wang, D., Li, J., Xu, K., Wu, Y.: Sentiment community detection: exploring sentiments and relationships in social networks. Electron. Commer. Res. 17(1), 103–132 (2017). https://doi.org/10.1007/s10660-016-9233-8

    Article  Google Scholar 

  40. Zheng, L., Wang, H., Gao, S.: Sentimental feature selection for sentiment analysis of Chinese online reviews. Int. J. Mach. Learn. Cybern. 9(1), 75–84 (2015). https://doi.org/10.1007/s13042-015-0347-4

    Article  Google Scholar 

  41. Alves, A.L.F.: A spatial and temporal sentiment analysis approach applied to Twitter microtexts. J. Inf. Data Manag. 6, 118 (2015)

    Google Scholar 

  42. Chaabani, Y., Toujani, R., Akaichi, J.: Sentiment analysis method for tracking touristics reviews in social media network. In: De Pietro, G., Gallo, L., Howlett, R.J., Jain, L.C. (eds.) KES-IIMSS 2017. SIST, vol. 76, pp. 299–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59480-4_30

    Chapter  Google Scholar 

  43. Contractor, D.: Tracking political elections on social media: applications and experience. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina, 25–31 July 2015

    Google Scholar 

  44. Bai, H., Yu, G.: A Weibo-based approach to disaster informatics: incidents monitor in post-disaster situation via Weibo text negative sentiment analysis. Nat. Hazards 83, 1177–1196 (2016)

    Article  Google Scholar 

  45. Brynielsson, J., Johansson, F., Jonsson, C., Westling, A.: Emotion classification of social media posts for estimating people’s reactions to communicated alert messages during crises. Secur. Inform. 3(1), 1–11 (2014). https://doi.org/10.1186/s13388-014-0007-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, P., Reji, R.E., Singh, V. (2022). Extracting Emotion Quotient of Viral Information Over Twitter. In: Bapi, R., Kulkarni, S., Mohalik, S., Peri, S. (eds) Distributed Computing and Intelligent Technology. ICDCIT 2022. Lecture Notes in Computer Science(), vol 13145. Springer, Cham. https://doi.org/10.1007/978-3-030-94876-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94876-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94875-7

  • Online ISBN: 978-3-030-94876-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics