Skip to main content

On-board UAV Pilots Identification in Counter UAV Images

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020)

Abstract

Among Unmanned Aerial Vehicles (UAV) countermeasures, the detection of the drone position and the identification of the human pilot represent two crucial tasks, as demonstrated by the attention already obtained from security agencies in different countries. Many research works focus on the UAV detection but they rarely take into account the problem of the detection of the pilot of another approaching UAV. This work proposes a full autonomous pipeline that, taking images from a flying UAV, can detect the humans in the scene and recognizing the eventual presence of the pilot(s). The system has been designed to be run on-board of the UAV, and tests have been performed on an NVIDIA Jetson TX2. Moreover, the SnT-ARG-PilotDetect dataset, designed to assess the capabilities to identify the UAV pilots in realistic scenarios, is introduced for the first time and made publicly available. An accurate comparison of different classification approaches on the pilot and non-pilot images of the proposed dataset has been performed, and results show the validity of the proposed pipeline for piloting behavior classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The dataset is available at https://github.com/dcazzato/SnT-Arg-PilotDetect.

  2. 2.

    Available at https://github.com/google/automl/tree/master/efficientdet.

References

  1. Al Abkal, S., Talas, R.H.A., Shaw, S., Ellis, T.: The application of unmanned aerial vehicles in managing port and border security in the us and Kuwait: reflections on best practice for the UK. Int. J. Marit. Crime Secur. 1(1) (2020)

    Google Scholar 

  2. Alsalam, B.H.Y., Morton, K., Campbell, D., Gonzalez, F.: Autonomous UAV with vision based on-board decision making for remote sensing and precision agriculture. In: 2017 IEEE Aerospace Conference, pp. 1–12. IEEE (2017)

    Google Scholar 

  3. Avola, D., Foresti, G.L., Martinel, N., Micheloni, C., Pannone, D., Piciarelli, C.: Aerial video surveillance system for small-scale UAV environment monitoring. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2017)

    Google Scholar 

  4. Biallawons, O., Klare, J., Fuhrmann, L.: Improved uav detection with the mimo radar mira-cle ka using range-velocity processing and tdma correction algorithms. In: 2018 19th International Radar Symposium (IRS), pp. 1–10. IEEE (2018)

    Google Scholar 

  5. Bishop, C.M., et al.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    Google Scholar 

  6. Bisio, I., Garibotto, C., Lavagetto, F., Sciarrone, A., Zappatore, S.: Unauthorized amateur uav detection based on wifi statistical fingerprint analysis. IEEE Commun. Mag. 56(4), 106–111 (2018)

    Article  Google Scholar 

  7. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields. In: arXiv preprint arXiv:1812.08008 (2018)

  8. Cazzato, D., Cimarelli, C., Voos, H.: A preliminary study on the automatic visual based identification of uav pilots from counter uavs. In: VISIGRAPP (5: VISAPP), pp. 582–589 (2020)

    Google Scholar 

  9. Cazzato, D., Olivares-Mendez, M.A., Sanchez-Lopez, J.L., Voos, H.: Vision-based aircraft pose estimation for uavs autonomous inspection without fiducial markers. In: IECON 2019–45th Annual Conference of the IEEE Industrial Electronics Society, vol. 1, pp. 5642–5648. IEEE (2019)

    Google Scholar 

  10. Chen, W.H., Hsu, S.H., Shen, H.P.: Application of svm and ann for intrusion detection. Comput. Oper. Res. 32(10), 2617–2634 (2005)

    Article  MATH  Google Scholar 

  11. Christnacher, F., et al.: Optical and acoustical uav detection. In: Electro-Optical Remote Sensing X, vol. 9988, p. 99880B. International Society for Optics and Photonics (2016)

    Google Scholar 

  12. Dolan, A.M., et al.: Integration of drones into domestic airspace: selected legal issues (2013)

    Google Scholar 

  13. Ezuma, M., Erden, F., Anjinappa, C.K., Ozdemir, O., Guvenc, I.: Micro-uav detection and classification from rf fingerprints using machine learning techniques. In: 2019 IEEE Aerospace Conference, pp. 1–13. IEEE (2019)

    Google Scholar 

  14. Feichtenhofer, C., Pinz, A., Wildes, R.P.: Spatiotemporal multiplier networks for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4768–4777 (2017)

    Google Scholar 

  15. Hartmann, K., Steup, C.: The vulnerability of uavs to cyber attacks-an approach to the risk assessment. In: 2013 5th International Conference on Cyber Conflict (CYCON 2013), pp. 1–23. IEEE (2013)

    Google Scholar 

  16. Huttunen, M.: Civil unmanned aircraft systems and security: the European approach. J. Transp. Secur. 12(3–4), 83–101 (2019)

    Article  Google Scholar 

  17. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  18. Jovanoska, S., Brötje, M., Koch, W.: Multisensor data fusion for uav detection and tracking. In: 2018 19th International Radar Symposium (IRS), pp. 1–10. IEEE (2018)

    Google Scholar 

  19. Kanistras, K., Martins, G., Rutherford, M.J., Valavanis, K.P.: A survey of unmanned aerial vehicles (UAVs) for traffic monitoring. In: 2013 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 221–234. IEEE (2013)

    Google Scholar 

  20. Kim, I.S., Choi, H.S., Yi, K.M., Choi, J.Y., Kong, S.G.: Intelligent visual surveillance-a survey. Int. J. Control Autom. Syst. 8(5), 926–939 (2010)

    Article  Google Scholar 

  21. Leo, M., Carcagnì, P., Mazzeo, P.L., Spagnolo, P., Cazzato, D., Distante, C.: Analysis of facial information for healthcare applications: a survey on computer vision-based approaches. Information 11(3), 128 (2020)

    Article  Google Scholar 

  22. Li, L.J., Socher, R., Fei-Fei, L.: Towards total scene understanding: Classification, annotation and segmentation in an automatic framework. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2036–2043. IEEE (2009)

    Google Scholar 

  23. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  24. Liu, J., Shahroudy, A., Perez, M.L., Wang, G., Duan, L.Y., Chichung, A.K.: Ntu rgb+ d 120: a large-scale benchmark for 3d human activity understanding. IEEE Trans. Pattern Anal. Mach. Intell., 2684–2701 (2019)

    Google Scholar 

  25. May, R., Steinheim, Y., Kvaløy, P., Vang, R., Hanssen, F.: Performance test and verification of an off-the-shelf automated avian radar tracking system. Ecol. Evol. 7(15), 5930–5938 (2017)

    Article  Google Scholar 

  26. Morris, B.T., Trivedi, M.M.: A survey of vision-based trajectory learning and analysis for surveillance. IEEE Trans. Circuits Syst. Video Technol. 18(8), 1114–1127 (2008)

    Article  Google Scholar 

  27. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Article  Google Scholar 

  28. Schneider, D.: Electronic license plates for drones [spectral lines]. IEEE Spectr. 54, 8 (2017). https://doi.org/10.1109/MSPEC.2017.7906882

    Article  Google Scholar 

  29. Shoufan, A., Al-Angari, H.M., Sheikh, M.F.A., Damiani, E.: Drone pilot identification by classifying radio-control signals. IEEE Trans. Inf. Forensics Secur. 13(10), 2439–2447 (2018)

    Article  Google Scholar 

  30. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: A dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  31. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(56), 1929–1958 (2014). http://jmlr.org/papers/v15/srivastava14a.html

  32. Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790 (2020)

    Google Scholar 

  33. Unlu, E., Zenou, E., Riviere, N.: Using shape descriptors for uav detection. Electron. Imaging 2018(9), 1–5 (2018)

    Google Scholar 

  34. Unlu, E., Zenou, E., Riviere, N., Dupouy, P.-E.: Deep learning-based strategies for the detection and tracking of drones using several cameras. IPSJ Trans. Comput. Vis. Appl. 11(1), 1–13 (2019). https://doi.org/10.1186/s41074-019-0059-x

    Article  Google Scholar 

  35. Wang, B., Peng, X., Liu, D.: Airborne sensor data-based unsupervised recursive identification for uav flight phases. IEEE Sens. J. 20(18), 10733–10743 (2020)

    Google Scholar 

  36. Zhang, H.B., et al.: A comprehensive survey of vision-based human action recognition methods. Sensors 19(5), 1005 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. Miguel Angel Olivares-Mendez for his technical support in the creation of the dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Cazzato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cazzato, D., Cimarelli, C., Voos, H. (2022). On-board UAV Pilots Identification in Counter UAV Images. In: Bouatouch, K., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2020. Communications in Computer and Information Science, vol 1474. Springer, Cham. https://doi.org/10.1007/978-3-030-94893-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94893-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94892-4

  • Online ISBN: 978-3-030-94893-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics