Skip to main content

Using MedBIoT Dataset to Build Effective Machine Learning-Based IoT Botnet Detection Systems

  • Conference paper
  • First Online:
Information Systems Security and Privacy (ICISSP 2020)

Abstract

The exponential increase in the adoption of the Internet of Things (IoT) technology combined with the usual lack of security measures carried by such devices have brought up new risks and security challenges to networks. IoT devices are prone to be easily compromised and used as magnification platforms for record-breaking cyber-attacks (i.e., Distributed Denial-of-Service attacks). Intrusion detection systems based on machine learning aim to detect such threats effectively, overcoming the security limitations on networks. In this regard, data quantity and quality is key to build effective detection models. These data are scarce and limited to small-sized networks for IoT environments. This research addresses this gap generating a labelled behavioral IoT data set, composed of normal and actual botnet network traffic in a medium-sized IoT network (up to 83 devices). Mirai, BashLite and Torii real botnet malware are deployed and data from early stages of botnet deployment is acquired (i.e., infection, propagation and communication with C&C stages). Supervised (i.e. classification) and unsupervised (i.e., anomaly detection) machine learning models are built with the data acquired as a demonstration of the suitability and reliability of the collected data set for effective machine learning-based botnet detection intrusion detection systems (i.e., testing, design and deployment). The IoT behavioral data set is released, being publicly available as MedBIoT data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonakakis, M., et al.: Understanding the mirai botnet. In: 26th \(USENIX\) Security Symposium (\(\{USENIX\}\) Security 17). pp. 1093–1110 (2017)

    Google Scholar 

  2. Asokan, A.: Massive botnet attack used more than 400,000 IoT devices (2019). https://www.bankinfosecurity.com/massive-botnet-attack-used-more-than-400000-iot-devices-a-12841

  3. Bahşi, H., Nõmm, S., La Torre, F.B.: Dimensionality reduction for machine learning based IoT botnet detection. In: 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), pp. 1857–1862 (2018)

    Google Scholar 

  4. Benkhelifa, E., Welsh, T., Hamouda, W.: A critical review of practices and challenges in intrusion detection systems for IoT: toward universal and resilient systems. IEEE Commun. Surv. Tutor. 20(4), 3496–3509 (2018)

    Article  Google Scholar 

  5. Bertino, E., Islam, N.: Botnets and internet of things security. Computer 2, 76–79 (2017)

    Article  Google Scholar 

  6. Bezerra, V.H., da Costa, V.G.T., Martins, R.A., Junior, S.B., Miani, R.S., Zarpelao, B.B.: Data set (2018). http://www.uel.br/grupo-pesquisa/secmq/dataset-iot-security.html

  7. Bezerra, V.H., da Costa, V.G.T., Martins, R.A., Junior, S.B., Miani, R.S., Zarpelao, B.B.: Providing IoT host-based datasets for intrusion detection research. In: Anais do XVIII Simpósio Brasileiro em Segurança da Informação e de Sistemas Computacionais, pp. 15–28. SBC (2018)

    Google Scholar 

  8. Bolzoni, D.: Revisiting Anomaly-based Network Intrusion Detection Systems. University of Twente, Enschede (2009)

    Book  Google Scholar 

  9. Bonderud, D.: Leaked mirai malware boosts IoT insecurity threat level (2016). https://securityintelligence.com/news/leaked-mirai-mal ware-boosts-iot-insecurity-threat-level/

  10. Bosche, A., Crawford, D., Jackson, D., Schallehn, M., Schorling, C.: Unlocking opportunities in the internet of things (2018). https://www.bain.com/contentassets/5aa3a678438846 289af59f62e62a3456/bain_brief_unlocking_opportunit ies_in_the_internet_of_things.pdf

  11. Butun, I., Morgera, S.D., Sankar, R.: A survey of intrusion detection systems in wireless sensor networks. IEEE Commun. Surv. Tutor. 16(1), 266–282 (2013)

    Article  Google Scholar 

  12. Crowdstrike: Hybrid analysis (2019). https://www.hybrid-analysis.com/

  13. DeBeck, C., Chung, J., McMillen, D.: I can’t believe mirais: tracking the infamous IoT malware (2019). https://securityintelligence.com/posts/i-cant-believe-mirais-tracking-the-infamous-iot-malware-2/

  14. Doffman, Z.: Cyberattacks on IoT devices surge 300% in 2019, ‘measured in billions’, report claims (2019). https://www.forbes.com/sites/zakdoffman/2019/09/14/ dangerous-cyberattacks-on-iot-devices-up-300-in-2019-now-rampant-report-claims/#574229995892

  15. Doshi, R., Apthorpe, N., Feamster, N.: Machine learning DDoS detection for consumer internet of things devices. In: 2018 IEEE Security and Privacy Workshops (SPW), pp. 29–35. IEEE (2018)

    Google Scholar 

  16. Feily, M., Shahrestani, A., Ramadass, S.: A survey of botnet and botnet detection. In: 2009 Third International Conference on Emerging Security Information, Systems and Technologies, pp. 268–273. IEEE (2009)

    Google Scholar 

  17. Garcia, S., Grill, M., Stiborek, J., Zunino, A.: An empirical comparison of botnet detection methods. Compu. Secur. 45, 100–123 (2014)

    Google Scholar 

  18. Gifford, W.R., Goldberg, M.L., Tanimoto, P.M., Celnicker, D.R., Poplawski, M.E.: Residential lighting end-use consumption study: estimation framework and initial estimates (2012). https://www1.eere.energy.gov/buildings/publications/pdfs/ssl/2012_residential-lighting-study.pdf

  19. Guerra-Manzanares, A., Bahsi, H., Nõmm, S.: Hybrid feature selection models for machine learning based botnet detection in IoT networks. In: 2019 International Conference on Cyberworlds (CW), pp. 324–327 (2019)

    Google Scholar 

  20. Guerra-Manzanares, A., Medina-Galindo, J., Bahsi, H., Nõmm, S.: Medbiot data set archive (2020). https://cs.taltech.ee/research/data/medbiot/

  21. Guerra-Manzanares, A., Medina-Galindo, J., Bahsi, H., Nõmm, S.: Medbiot: generation of an IoT botnet dataset in a medium-sized IoT network. In: Proceedings of the 6th International Conference on Information Systems Security and Privacy - Volume 1: ICISSP, pp. 207–218. INSTICC, SciTePress (2020). https://doi.org/10.5220/0009187802070218

  22. Hachem, N., Mustapha, Y.B., Granadillo, G.G., Debar, H.: Botnets: lifecycle and taxonomy. In: 2011 Conference on Network and Information Systems Security, pp. 1–8. IEEE (2011)

    Google Scholar 

  23. Hilton, S.: DYN analysis summary of Friday October 21 attack (2016). https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/

  24. Kang, H., Ahn, D.H., Lee, G.M., Yoo, J.D., Park, K.H., Kim, H.K.: IoT network intrusion dataset(2019). http://dx.doi.org/10.21227/q70p-q449

  25. Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: Ddos in the IoT: Mirai and other botnets. Computer 50(7), 80–84 (2017)

    Article  Google Scholar 

  26. Koroniotis, N., Moustafa, N., Sitnikova, E., Turnbull, B.: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-IoT dataset. Fut. Gene. Comput. Syst. 100, 779–796 (2019)

    Article  Google Scholar 

  27. Krebs, B.: Krebsonsecurity hit with record Ddos (2016). https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/

  28. Kroustek, J., Iliushin, V., Shirokova, A., Neduchal, J., Hron, M.: Torii botnet - not another mirai variant (2018). https://blog.avast.com/new-torii-botnet-threat-research

  29. Leonard, J., Xu, S., Sandhu, R.: A framework for understanding botnets. In: 2009 International Conference on Availability, Reliability and Security, pp. 917–922. IEEE (2009)

    Google Scholar 

  30. Lin, K.C., Chen, S.Y., Hung, J.C.: Botnet detection using support vector machines with artificial fish swarm algorithm. J. Appl. Math. 2014 (2014)

    Google Scholar 

  31. Livadas, C., Walsh, R., Lapsley, D.E., Strayer, W.T.: Using machine learning techniques to identify botnet traffic. In: LCN, pp. 967–974. Citeseer (2006)

    Google Scholar 

  32. Marzano, A., et al.: The evolution of bashlite and mirai IoT botnets. In: 2018 IEEE Symposium on Computers and Communications (ISCC), pp. 00813–00818. IEEE (2018)

    Google Scholar 

  33. McDermott, C.D., Majdani, F., Petrovski, A.V.: Botnet detection in the internet of things using deep learning approaches. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2018)

    Google Scholar 

  34. McKinsey: What’s new with the internet of things? (2017). https://www.mckinsey.com/industries/semiconductors/our-insights/whats-new-with-the-internet-of-things

  35. Meidan, Y., et al.: detection_of_iot_botnet_attacks_n_baiot data set (2018). http://archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT

  36. Meidan, Y., et al.: N-baiot-network-based detection of IoT botnet attacks using deep autoencoders. IEEE Perva. Comput. 17(3), 12–22 (2018)

    Article  Google Scholar 

  37. Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of autoencoders for online network intrusion detection. arXiv preprint arXiv:1802.09089 (2018)

  38. Moustafa, N.: The bot-IoT dataset. http://dx.doi.org/10.21227/r7v2-x988 (2019). 10.21227/r7v2-x988

  39. Nõmm, S., Bahşi, H.: Unsupervised anomaly based botnet detection in IoT networks. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1048–1053 (2018)

    Google Scholar 

  40. O’Donnell, L.: More than half of IoT devices vulnerable to severe attacks (2020). https://threatpost.com/half-iot-devices-vulnerable-severe-attacks/153609/

  41. Parmisano, A., Garcia, S., Erquiaga, M.J.: Stratosphere laboratory. a labeled dataset with malicious and benign IoT network traffic (2020). https://www.stratosphereips.org/datasets-iot23

  42. Pratt, M.K.: Top challenges of IoT adoption in the enterprise (2019). https://internetofthingsagenda.techtarget.com/feature/Top-challenges-of-IoT-adoption-in-the-enterprise

  43. Pritchard, M.: Ddos attack timeline: time to take Ddos seriously (2018). https://activereach.net/newsroom/blog/time-to-take-ddos-seriously-a-recent-timeline-of-events/

  44. Prokofiev, A.O., Smirnova, Y.S., Surov, V.A.: A method to detect internet of things botnets. In: 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 105–108. IEEE (2018)

    Google Scholar 

  45. Radware: A quick history of IoT botnets (2018). https://blog.radware.com/uncategorized/2018/03/history-of-iot-botnets/

  46. Scikit-Learn: novelty and outlier detection (2020). https://scikit-learn.org/stable/modules/outlier_detection.html

  47. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput. Secur. 31(3), 357–374 (2012)

    Google Scholar 

  48. Shire, R., Shiaeles, S., Bendiab, K., Ghita, B., Kolokotronis, N.: Malware squid: a novel iot malware traffic analysis framework using convolutional neural network and binary visualisation. In: Internet of Things, Smart Spaces, and Next Generation Networks and Systems, pp. 65–76. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01168-0

  49. Silva, S.S., Silva, R.M., Pinto, R.C., Salles, R.M.: Botnets: a survey. Comput. Netw. 57(2), 378–403 (2013)

    Article  Google Scholar 

  50. Sklavos, N., Zaharakis, I.D., Kameas, A., Kalapodi, A.: Security & trusted devices in the context of internet of things (IoT). In: 2017 Euromicro Conference on Digital System Design (DSD), pp. 502–509. IEEE (2017)

    Google Scholar 

  51. Statista: Forecast end-user spending on iot solutions worldwide from 2017 to 2025 (2019). https://www.statista.com/statistics/976313/global-iot-market-size/

  52. Statista: Number of internet of things (IoT) connected devices worldwide in 2018, 2025 and 2030 (2019). https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/

  53. Sun, B., Osborne, L., Xiao, Y., Guizani, S.: Intrusion detection techniques in mobile ad hoc and wireless sensor networks. IEEE Wirel. Commun. 14(5), 56–63 (2007)

    Article  Google Scholar 

  54. TrendMicro: Bashlite IoT malware updated with mining and backdoor commands, targets WeMo devices (2019)

    Google Scholar 

  55. Weagle, S.: Financial impact of mirai Ddos attack on DYN revealed in new data (2017). https://www.corero.com/blog/797-financial-impact-of-mirai-ddos-attack-on-dyn-revealed-in-new-data.html

  56. Weisman, S.: Emerging threats - what is a distributed denial of service attack (Ddos) and what can you do about them? (2019). https://us.norton.com/internetsecurity-emerging-threats-what-is-a-ddos-attack-30sectech-by-norton.html

  57. Winward, R.: IoT attack handbook: A field guide to understanding IoT attacks from the mirai botnet to its modern variants (2018). https://www.datacom.cz/userfiles/miraihandbook ebook_final.pdf

  58. Zarpelão, B.B., Miani, R.S., Kawakani, C.T., de Alvarenga, S.C.: A survey of intrusion detection in internet of things. J. Netw. Comput. Appl. 84, 25–37 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Guerra-Manzanares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guerra-Manzanares, A., Medina-Galindo, J., Bahsi, H., Nõmm, S. (2022). Using MedBIoT Dataset to Build Effective Machine Learning-Based IoT Botnet Detection Systems. In: Furnell, S., Mori, P., Weippl, E., Camp, O. (eds) Information Systems Security and Privacy. ICISSP 2020. Communications in Computer and Information Science, vol 1545. Springer, Cham. https://doi.org/10.1007/978-3-030-94900-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94900-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94899-3

  • Online ISBN: 978-3-030-94900-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics