Skip to main content

Key Agreement in the Lightning Network Protocol

  • Conference paper
  • First Online:
Information Systems Security and Privacy (ICISSP 2020)

Abstract

The Lightning Network is a decentralized bidirectional payment solution using the Bitcoin blockchain. In an earlier paper, we analyzed the secrecy and authenticity properties of the four subprotocols of the network and found that the key agreement protocol does not guarantee authenticity wrt. the responder. In this paper, we continue the analysis of the key agreement protocol using ProVerif and amend the protocol such that authenticity holds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: the spi calculus. Inf. Comput. 148(1), 1–70 (1999)

    Article  MathSciNet  Google Scholar 

  2. Blanchet, B.: From secrecy to authenticity in security protocols. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 342–359. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45789-5_25

    Chapter  Google Scholar 

  3. Blanchet, B.: Automatic verification of security protocols in the symbolic model: the verifier ProVerif. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-2013. LNCS, vol. 8604, pp. 54–87. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10082-1_3

    Chapter  Google Scholar 

  4. Blanchet, B., Smyth, B., Cheval, V., Sylvestre, M.: ProVerif 2.00: automatic cryptographic protocol verifier, user manual and tutorial (2018)

    Google Scholar 

  5. Cortier, V., Degrieck, J., Delaune, S.: Analysing routing protocols: four nodes topologies are sufficient. In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS, vol. 7215, pp. 30–50. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28641-4_3

    Chapter  Google Scholar 

  6. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  7. Dolev, D., Yao, A.C.: On the security of public key protocols (extended abstract). In: 22nd Annual Symposium on Foundations of Computer Science, Nashville, Tennessee, USA, 28–30 October 1981, pp. 350–357 (1981). https://doi.org/10.1109/SFCS.1981.32

  8. Herrera-Joancomartí, J., Navarro-Arribas, G., Ranchal-Pedrosa, A., Pérez-Solà, C., Garcia-Alfaro, J.: On the difficulty of hiding the balance of lightning network channels. In: Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security, Asia CCS 2019, pp. 602–612. ACM, New York (2019). https://doi.org/10.1145/3321705.3329812. http://doi.acm.org/10.1145/3321705.3329812

  9. Hüttel, H., Staroveski, V.: Secrecy and authenticity properties of the lightning network protocol. In: Proceedings of the 6th International Conference on Information Systems Security and Privacy, ICISSP 2020, Valletta, Malta, 25–27 February 2020, pp. 119–130 (2020). https://doi.org/10.5220/0008974801190130

  10. Kiayias, A., Litos, O.S.T.: A composable security treatment of the lightning network. IACR Cryptol. ePrint Arch. 2019, 778 (2019)

    Google Scholar 

  11. Krawczyk, H., Eronen, P.: HMAC-based extract-and-expand key derivation function (HKDF) (2010)

    Google Scholar 

  12. lightningnetwork: Github - lightningnetwork-rfc/08-transport.md (2017). https://github.com/lightningnetwork/lightning-rfc/blob/master/08-transport.md

  13. Perrin, T.: The noise protocol framework. PowerPoint Presentation (2016)

    Google Scholar 

  14. Seres, I.A., Gulyás, L., Nagy, D.A., Burcsi, P.: Topological analysis of Bitcoin’s lightning network. In: Pardalos, P., Kotsireas, I., Guo, Y., Knottenbelt, W. (eds.) Mathematical Research for Blockchain Economy. SPBE, pp. 1–12. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37110-4_1

    Chapter  Google Scholar 

  15. Woo, T.Y.C., Lam, S.S.: A semantic model for authentication protocols. In: Proceedings of the 1993 IEEE Symposium on Security and Privacy, SP 1993, pp. 178–194. IEEE Computer Society, Washington, DC (1993). http://dl.acm.org/citation.cfm?id=882489.884188

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Hüttel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hüttel, H., Staroveški, V. (2022). Key Agreement in the Lightning Network Protocol. In: Furnell, S., Mori, P., Weippl, E., Camp, O. (eds) Information Systems Security and Privacy. ICISSP 2020. Communications in Computer and Information Science, vol 1545. Springer, Cham. https://doi.org/10.1007/978-3-030-94900-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94900-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94899-3

  • Online ISBN: 978-3-030-94900-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics