Abstract
A k-cd-coloring of a graph G is a partition of the vertex set of G into k independent sets \(V_1,\ldots ,V_k\), where each \(V_i\) is dominated by some vertex of G. The least integer k such that G admits a k-cd-coloring is called the cd-chromatic number, \(\chi _{cd}(G)\), of G. We say that \(S \subseteq V(G)\) is a subclique in G if \(d_G(x,y)\ne 2\) for every \(x,y \in S\). The cardinality of a maximum subclique in G is called the subclique number, \(\omega _s(G)\), of G. Given a graph G and \(k\in \mathbb {N}\), the problem cd-Colorability checks whether \(\chi _{cd}(G)\le k\). The problem cd-Colorability is NP-complete for \(K_4\)-free graphs [Merounane et al., 2014], \(P_5\)-free graphs, and chordal graphs [Shalu et al., 2020]. In this paper, we show that the problem cd-Colorability is \(O(n^2)\)-time solvable in the intersection of the above graph classes (\(\{P_5,K_4\}\)-free chordal graphs). The problem Subclique takes a graph G and \(k \in \mathbb {N}\) as inputs and checks whether \(\omega _s(G)\ge k\). The Subclique problem is NP-complete for \(P_6\)-free graphs and bipartite gaphs [Shalu et al., 2017]. We prove that the problem Subclique is \(O(n^3)\)-time solvable in the class of \(P_6\)-free chordal bipartite graphs (a subclass of \(P_6\)-free bipartite graphs). In addition, we show that the cd-chromatic number and the subclique number are equal in these two graph classes.
M. A. Shalu—Supported by SERB(DST), MATRICS scheme MTR/2018/000086.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arumugam, S., Bagga, J., Chandrasekar, K.R.: On dominator colorings in graphs. Proc. Math. Sci. 122, 561–571 (2012). https://doi.org/10.1007/s12044-012-0092-5
Arumugam, S., Chandrasekar, K.R., Misra, N., Philip, G., Saurabh, S.: Algorithmic aspects of dominator colorings in graphs. In: Iliopoulos, C.S., Smyth, W.F. (eds.) Combinatorial Algorithms. IWOCA 2011. LNCS, vol. 7056. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25011-8_2
Chen, Y.H.: The dominated coloring problem and its application. In: Murgante, B., et al. (eds.) Computational Science and Its Applications. LNCS, vol. 8584. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09153-2_10
Damaschke, P., Muller, H., Kratsch, D.: Domination in convex and chordal bipartite graphs. Inf. Proc. Lett. 36, 231–236 (1990). https://doi.org/10.1016/0020-0190(90)90147-P
Das, S., Mishra, S.: Lower bounds on approximating some variations of vertex coloring problem over restricted graph classes. Discrete Math. Algorith. Appl. 12 (2020). https://doi.org/10.1142/S179383092050086X
Gera, R., Horton, S., Rasmussen, C.: Dominator colorings and safe clique partitions. Congressus Numerantium 181, 19–32 (2006)
Gera, R.M.: On dominator colorings in graphs. Graph Theory Notes of New York LII, pp. 25–30 (2007)
Kiruthika, R., Rai, A., Saurabh, S., Tale, P.: Parametrized and exact algorithms for class domination coloring. In: Proceedings of the 43rd Conference on Current Trends in Theory and Practice of Computer Science, LNCS vol. 10139, pp. 336–349 (2017). https://doi.org/10.1007/978-3-319-51963-0_26
Klavžar, S., Tavakoli, M.: Dominated and dominator colorings over (edge) corona and hierarchical products. Appl. Math. Comput. 390 (2021). https://doi.org/10.1016/j.amc.2020.125647
Liu, J., Zhou, H.: Dominating subgraphs in graphs with some forbidden structures. Discrete Math. 135, 163–168 (1994). https://doi.org/10.1016/0012-365X(93)E0111-G
Merouane, H.B., Haddad, M., Chellali, M., Kheddouci, H.: Dominated colorings of graphs. Graphs Combin. 31(3), 713–727 (2015). https://doi.org/10.1007/s00373-014-1407-3
Shalu, M.A., Kirubakaran, V.K.: On cd-coloring of trees and co-bipartite graphs. In: Mudgal A., Subramanian C.R. (eds.) Algorithms and Discrete Applied Mathematics. LNCS, vol. 12601, pp. 209–221 (2021). https://doi.org/10.1007/978-3-030-67899-9_16
Shalu, M.A., Sandhya, T.P.: The cd-Coloring of graphs. In: Govindarajan, S., Maheshwari, A. (eds.) Algorithms and Discrete Applied Mathematics. LNCS, vol. 9602. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29221-2_29
Shalu, M.A., Vijayakumar, S., Sandhya, T.P.: A lower bound of the cd-Chromatic number and its complexity. In: Gaur, D., Narayanaswamy, N. (eds.) Algorithms and Discrete Applied Mathematics. LNCS, vol. 10156. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53007-9_30
Shalu, M.A., Vijayakumar, S., Sandhya, T.P.: On complexity of cd-coloring of graphs. Discr. Appl. Math. 280, 171–185 (2020). https://doi.org/10.1016/j.dam.2018.03.004
Swaminathan, V., Sundareswaran, R.: Color class domination in graphs. Narosa Publishing House, Mathematical and Experimental Physics (2010)
West, D.B.: Introduction to Graph Theory. Second Edition, Pearson (2018)
Acknowledgement
We thank Cyriac Antony for proof-reading this paper. We thank the reviewers of CALDAM 2022 whose suggestions improved the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Shalu, M.A., Kirubakaran, V.K. (2022). On cd-Coloring of \(\{P_5,K_4\}\)-free Chordal Graphs. In: Balachandran, N., Inkulu, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2022. Lecture Notes in Computer Science(), vol 13179. Springer, Cham. https://doi.org/10.1007/978-3-030-95018-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-95018-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-95017-0
Online ISBN: 978-3-030-95018-7
eBook Packages: Computer ScienceComputer Science (R0)