Skip to main content

On cd-Coloring of \(\{P_5,K_4\}\)-free Chordal Graphs

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2022)

Abstract

A k-cd-coloring of a graph G is a partition of the vertex set of G into k independent sets \(V_1,\ldots ,V_k\), where each \(V_i\) is dominated by some vertex of G. The least integer k such that G admits a k-cd-coloring is called the cd-chromatic number, \(\chi _{cd}(G)\), of G. We say that \(S \subseteq V(G)\) is a subclique in G if \(d_G(x,y)\ne 2\) for every \(x,y \in S\). The cardinality of a maximum subclique in G is called the subclique number, \(\omega _s(G)\), of G. Given a graph G and \(k\in \mathbb {N}\), the problem cd-Colorability checks whether \(\chi _{cd}(G)\le k\). The problem cd-Colorability is NP-complete for \(K_4\)-free graphs [Merounane et al., 2014], \(P_5\)-free graphs, and chordal graphs [Shalu et al., 2020]. In this paper, we show that the problem cd-Colorability is \(O(n^2)\)-time solvable in the intersection of the above graph classes (\(\{P_5,K_4\}\)-free chordal graphs). The problem Subclique takes a graph G and \(k \in \mathbb {N}\) as inputs and checks whether \(\omega _s(G)\ge k\). The Subclique problem is NP-complete for \(P_6\)-free graphs and bipartite gaphs [Shalu et al., 2017]. We prove that the problem Subclique is \(O(n^3)\)-time solvable in the class of \(P_6\)-free chordal bipartite graphs (a subclass of \(P_6\)-free bipartite graphs). In addition, we show that the cd-chromatic number and the subclique number are equal in these two graph classes.

M. A. Shalu—Supported by SERB(DST), MATRICS scheme MTR/2018/000086.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arumugam, S., Bagga, J., Chandrasekar, K.R.: On dominator colorings in graphs. Proc. Math. Sci. 122, 561–571 (2012). https://doi.org/10.1007/s12044-012-0092-5

  2. Arumugam, S., Chandrasekar, K.R., Misra, N., Philip, G., Saurabh, S.: Algorithmic aspects of dominator colorings in graphs. In: Iliopoulos, C.S., Smyth, W.F. (eds.) Combinatorial Algorithms. IWOCA 2011. LNCS, vol. 7056. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25011-8_2

  3. Chen, Y.H.: The dominated coloring problem and its application. In: Murgante, B., et al. (eds.) Computational Science and Its Applications. LNCS, vol. 8584. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09153-2_10

  4. Damaschke, P., Muller, H., Kratsch, D.: Domination in convex and chordal bipartite graphs. Inf. Proc. Lett. 36, 231–236 (1990). https://doi.org/10.1016/0020-0190(90)90147-P

  5. Das, S., Mishra, S.: Lower bounds on approximating some variations of vertex coloring problem over restricted graph classes. Discrete Math. Algorith. Appl. 12 (2020). https://doi.org/10.1142/S179383092050086X

  6. Gera, R., Horton, S., Rasmussen, C.: Dominator colorings and safe clique partitions. Congressus Numerantium 181, 19–32 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Gera, R.M.: On dominator colorings in graphs. Graph Theory Notes of New York LII, pp. 25–30 (2007)

    Google Scholar 

  8. Kiruthika, R., Rai, A., Saurabh, S., Tale, P.: Parametrized and exact algorithms for class domination coloring. In: Proceedings of the 43rd Conference on Current Trends in Theory and Practice of Computer Science, LNCS vol. 10139, pp. 336–349 (2017). https://doi.org/10.1007/978-3-319-51963-0_26

  9. Klavžar, S., Tavakoli, M.: Dominated and dominator colorings over (edge) corona and hierarchical products. Appl. Math. Comput. 390 (2021). https://doi.org/10.1016/j.amc.2020.125647

  10. Liu, J., Zhou, H.: Dominating subgraphs in graphs with some forbidden structures. Discrete Math. 135, 163–168 (1994). https://doi.org/10.1016/0012-365X(93)E0111-G

  11. Merouane, H.B., Haddad, M., Chellali, M., Kheddouci, H.: Dominated colorings of graphs. Graphs Combin. 31(3), 713–727 (2015). https://doi.org/10.1007/s00373-014-1407-3

  12. Shalu, M.A., Kirubakaran, V.K.: On cd-coloring of trees and co-bipartite graphs. In: Mudgal A., Subramanian C.R. (eds.) Algorithms and Discrete Applied Mathematics. LNCS, vol. 12601, pp. 209–221 (2021). https://doi.org/10.1007/978-3-030-67899-9_16

  13. Shalu, M.A., Sandhya, T.P.: The cd-Coloring of graphs. In: Govindarajan, S., Maheshwari, A. (eds.) Algorithms and Discrete Applied Mathematics. LNCS, vol. 9602. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29221-2_29

  14. Shalu, M.A., Vijayakumar, S., Sandhya, T.P.: A lower bound of the cd-Chromatic number and its complexity. In: Gaur, D., Narayanaswamy, N. (eds.) Algorithms and Discrete Applied Mathematics. LNCS, vol. 10156. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53007-9_30

  15. Shalu, M.A., Vijayakumar, S., Sandhya, T.P.: On complexity of cd-coloring of graphs. Discr. Appl. Math. 280, 171–185 (2020). https://doi.org/10.1016/j.dam.2018.03.004

  16. Swaminathan, V., Sundareswaran, R.: Color class domination in graphs. Narosa Publishing House, Mathematical and Experimental Physics (2010)

    MATH  Google Scholar 

  17. West, D.B.: Introduction to Graph Theory. Second Edition, Pearson (2018)

    Google Scholar 

Download references

Acknowledgement

We thank Cyriac Antony for proof-reading this paper. We thank the reviewers of CALDAM 2022 whose suggestions improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Kirubakaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shalu, M.A., Kirubakaran, V.K. (2022). On cd-Coloring of \(\{P_5,K_4\}\)-free Chordal Graphs. In: Balachandran, N., Inkulu, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2022. Lecture Notes in Computer Science(), vol 13179. Springer, Cham. https://doi.org/10.1007/978-3-030-95018-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95018-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95017-0

  • Online ISBN: 978-3-030-95018-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics