Skip to main content

Approximation and Parameterized Algorithms for Balanced Connected Partition Problems

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2022)

Abstract

For a given integer \(k\ge 2\), partitioning a connected graph into k vertex-disjoint connected subgraphs of similar (or fixed) orders is a classical problem that has been intensively investigated since late seventies. A connected k-partition of a graph is a partition of its vertex set into classes such that each one induces a connected subgraph. Given a connected graph \(G = (V, E)\) and a weight function \(w : V \rightarrow \mathbb {Q}_\ge \), the balanced connected k-partition problem looks for a connected k-partition of G into classes of roughly the same weight. To model this concept of balance, we seek connected k-partitions that either maximize the weight of a lightest class \((\textsc {max}\hbox {-}\textsc {min\,\,BCP}_k)\) or minimize the weight of a heaviest class \((\textsc {min}\hbox {-}\textsc {max\,\,BCP}_k)\). These problems, known to be NP-hard, are equivalent only when \(k=2\). We present a simple pseudo-polynomial \(\frac{k}{2}\)-approximation algorithm for \(\textsc {min}\hbox {-}\textsc {max\,\,BCP}_k\) that runs in time \(\mathcal {O}(W|V||E|)\), where \(W = \sum _{v \in V} w(v)\); then, using a scaling technique, we obtain a (polynomial) \((\frac{k}{2} +{\varepsilon })\)-approximation with running-time \(\mathcal {O}(|V|^3|E|/{\varepsilon })\), for any fixed \({\varepsilon }>0\). Additionally, we propose a fixed-parameter tractable algorithm for the unweighted \(\textsc {max}\hbox {-}\textsc {min\,\,BCP}\) (where k is part of the input) parameterized by the size of a vertex cover.

Research partially supported by grant #2015/11937-9, São Paulo Research Foundation (FAPESP). Moura is supported by FAPEMIG (Proc. APQ-01040-21) and Pró-Reitoria de Pesquisa da Universidade Federal de Minas Gerais. Wakabayashi is supported by CNPq (Proc. 306464/2016-0 and 423833/2018-9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alimonti, P., Calamoneri, T.: On the complexity of the max balance problem. In: Argentinian Workshop on Theoretical Computer Science (WAIT 1999), pp. 133–138 (1999)

    Google Scholar 

  2. Becker, R., Lari, I., Lucertini, M., Simeone, B.: A polynomial-time algorithm for max-min partitioning of ladders. Theory Comput. Syst. 34(4), 353–374 (2001). https://doi.org/10.1007/s00224-001-0008-8

    Article  MathSciNet  MATH  Google Scholar 

  3. Becker, R.I., Lari, I., Lucertini, M., Simeone, B.: Max-min partitioning of grid graphs into connected components. Networks 32(2), 115–125 (1998)

    Article  MathSciNet  Google Scholar 

  4. Becker, R.I., Perl, Y.: Shifting algorithms for tree partitioning with general weighting functions. J. Algorithms 4(2), 101–120 (1983)

    Article  MathSciNet  Google Scholar 

  5. Becker, R.I., Schach, S.R., Perl, Y.: A shifting algorithm for min-max tree partitioning. J. ACM 29(1), 58–67 (1982)

    Article  MathSciNet  Google Scholar 

  6. Casel, K., Friedrich, T., Issac, D., Niklanovits, A., Zeif, Z.: Balanced crown decomposition for connectivity constraints. In: Mutzel, P., Pagh, R., Herman, G. (eds.) 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 204, pp. 26:1–26:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl (2021)

    Google Scholar 

  7. Chataigner, F., Salgado, L.R.B., Wakabayashi, Y.: Approximation and inapproximability results on balanced connected partitions of graphs. Discret. Math. Theor. Comput. Sci. 9(1), 177–192 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Chen, G., Chen, Y., Chen, Z.-Z., Lin, G., Liu, T., Zhang, A.: Approximation algorithms for the maximally balanced connected graph tripartition problem. J. Comb. Optim. 1–21 (2020). https://doi.org/10.1007/s10878-020-00544-w

  9. Chen, Y., Chen, Z.-Z., Lin, G., Xu, Y., Zhang, A.: Approximation algorithms for maximally balanced connected graph partition. Algorithmica 83(12), 3715–3740 (2021). https://doi.org/10.1007/s00453-021-00870-3

    Article  MathSciNet  Google Scholar 

  10. Chlebíková, J.: Approximating the maximally balanced connected partition problem in graphs. Inf. Process. Lett. 60(5), 225–230 (1996)

    Article  MathSciNet  Google Scholar 

  11. Cygan, M., et al.: Miscellaneous. In: Parameterized Algorithms, pp. 129–150. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3_6

    Chapter  Google Scholar 

  12. Dyer, M., Frieze, A.: On the complexity of partitioning graphs into connected subgraphs. Discret. Appl. Math. 10(2), 139–153 (1985)

    Article  MathSciNet  Google Scholar 

  13. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92182-0_28

    Chapter  Google Scholar 

  14. Frederickson, G.N.: Optimal algorithms for tree partitioning. In: Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1991, pp. 168–177. Society for Industrial and Applied Mathematics, USA (1991)

    Google Scholar 

  15. Györi, E.: On division of graph to connected subgraphs. In: Combinatorics (Proc. Fifth Hungarian Colloq., Koszthely, 1976). Colloq. Math. Soc. János Bolyai, vol. 18, pp. 485–494 (1978)

    Google Scholar 

  16. Lovász, L.: A homology theory for spanning tress of a graph. Acta Mathematica Academiae Scientiarum Hungarica 30, 241–251 (1977)

    Article  Google Scholar 

  17. Lucertini, M., Perl, Y., Simeone, B.: Most uniform path partitioning and its use in image processing. Discret. Appl. Math. 42(2), 227–256 (1993)

    Article  MathSciNet  Google Scholar 

  18. Maravalle, M., Simeone, B., Naldini, R.: Clustering on trees. Comput. Stat. Data Anal. 24(2), 217–234 (1997)

    Article  MathSciNet  Google Scholar 

  19. Miyazawa, F.K., Moura, P.F., Ota, M.J., Wakabayashi, Y.: Partitioning a graph into balanced connected classes: formulations, separation and experiments. Eur. J. Oper. Res. 293(3), 826–836 (2021)

    Article  MathSciNet  Google Scholar 

  20. Perl, Y., Schach, S.R.: Max-min tree partitioning. J. ACM 28(1), 5–15 (1981)

    Article  MathSciNet  Google Scholar 

  21. Wu, B.Y.: Fully polynomial-time approximation schemes for the max-min connected partition problem on interval graphs. Discrete Math. Algorithms Appl. 04(01), 1250005 (2012)

    Article  MathSciNet  Google Scholar 

  22. Zhou, X., Wang, H., Ding, B., Hu, T., Shang, S.: Balanced connected task allocations for multi-robot systems: an exact flow-based integer program and an approximate tree-based genetic algorithm. Expert Syst. Appl. 116, 10–20 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matheus Jun Ota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moura, P.F.S., Ota, M.J., Wakabayashi, Y. (2022). Approximation and Parameterized Algorithms for Balanced Connected Partition Problems. In: Balachandran, N., Inkulu, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2022. Lecture Notes in Computer Science(), vol 13179. Springer, Cham. https://doi.org/10.1007/978-3-030-95018-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95018-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95017-0

  • Online ISBN: 978-3-030-95018-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics