Skip to main content

The Complexity of Star Colouring in Bounded Degree Graphs and Regular Graphs

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2022)

Abstract

A k-star colouring of a graph G is a function \(f:V(G)\rightarrow \{0,1,\dots ,k-1\}\) such that \(f(u)\ne f(v)\) for every edge uv of G, and G does not contain a 4-vertex path bicoloured by f as a subgraph. For \(k\in \mathbb {N}\), the problem k-Star Colourability takes a graph G as input and asks whether G is k-star colourable. By the construction of Coleman and Moré (SIAM J. Numer. Anal., 1983), for all \(k\ge 3\), k-Star Colourability is NP-complete for graphs of maximum degree \(d=k(k-1+\lceil \sqrt{k} \rceil )\). For \(k=4\) and \(k=5\), the maximum degree in this NP-completeness result is \(d=20\) and \(d=35\) respectively. We reduce the maximum degree to \(d=4\) in both cases: i.e., 4-Star Colourability and 5-Star Colourability are NP-complete for graphs of maximum degree four. We also show that for all \(k\ge 3\) and \(d<k\), the time complexity of k-Star Colourability is the same for graphs of maximum degree d and d-regular graphs (i.e., the problem is either in P for both classes or NP-complete for both classes).

M. A. Shalu—Supported by SERB(DST), MATRICS scheme MTR/2018/000086.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albertson, M.O., Chappell, G.G., Kierstead, H.A., Kündgen, A., Ramamurthi, R.: Coloring with no 2-colored \(P_4\)’s. Electron. J. Comb. 11(1), 26 (2004). https://doi.org/10.37236/1779

  2. Bok, J., Jedlic̆ková, N., Martin, B., Paulusma, D., Smith, S.: Acyclic, star and injective colouring: a complexity picture for H-free graphs. In: Grandoni, F., Herman, G., Sanders, P. (eds.) 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), vol. 173, pp. 22:1–22:22. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.4230/LIPIcs.ESA.2020.22

  3. Coleman, T.F., Moré, J.J.: Estimation of sparse Jacobian matrices and graph coloring problems. SIAM J. Numer. Anal. 20(1), 187–209 (1983)

    Article  MathSciNet  Google Scholar 

  4. Emden-Weinert, T., Hougardy, S., Kreuter, B.: Uniquely colourable graphs and hardness of colouring graphs of large girth. Comb. Probab. Comput. 7(4), 375–386 (1998). https://doi.org/10.1017/S0963548398003678

    Article  MathSciNet  MATH  Google Scholar 

  5. Gebremedhin, A.H., Tarafdar, A., Manne, F., Pothen, A.: New acyclic and star coloring algorithms with application to computing Hessians. SIAM J. Sci. Comput. 29(3), 1042–1072 (2007). https://doi.org/10.1137/050639879

    Article  MathSciNet  MATH  Google Scholar 

  6. Gebremedhin, A.H., Manne, F., Pothen, A.: What color is your Jacobian? Graph coloring for computing derivatives. SIAM Rev. 47(4), 629–705 (2005). https://doi.org/10.1137/S0036144504444711

    Article  MathSciNet  MATH  Google Scholar 

  7. Grünbaum, B.: Acyclic colorings of planar graphs. Israel J. Math. 14, 390–408 (1973). https://doi.org/10.1007/BF02764716

    Article  MathSciNet  MATH  Google Scholar 

  8. mikero (https://cstheory.stackexchange.com/users/149/mikero): Parameterized complexity from P to NP-hard and back again. Theoretical Computer Science Stack Exchange. https://cstheory.stackexchange.com/q/3473, (version: 13 April 2017)

  9. Lei, H., Shi, Y., Song, Z.X.: Star chromatic index of subcubic multigraphs. J. Graph Theory 88(4), 566–576 (2018). https://doi.org/10.1002/jgt.22230

    Article  MathSciNet  MATH  Google Scholar 

  10. Lyons, A.: Acyclic and star colorings of cographs. Discret. Appl. Math. 159(16), 1842–1850 (2011). https://doi.org/10.1016/j.dam.2011.04.011

    Article  MathSciNet  MATH  Google Scholar 

  11. Molloy, M., Reed, B.: Colouring graphs when the number of colours is almost the maximum degree. J. Comb. Theory Ser. B 109, 134–195 (2014). https://doi.org/10.1016/j.jctb.2014.06.004

    Article  MathSciNet  MATH  Google Scholar 

  12. Omoomi, B., Roshanbin, E., Dastjerdi, M.V.: A polynomial time algorithm to find the star chromatic index of trees. Electron. J. Comb. 28(1) (2021). https://doi.org/10.37236/9202. Article No. 16

  13. Shalu, M.A., Antony, C.: The complexity of restricted star colouring. Discret. Appl. Math. (2021, in press). https://doi.org/10.1016/j.dam.2021.05.015. Available online: 31 May 2021

  14. West, D.B.: Introduction to graph theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

  15. Xie, D., Xiao, H., Zhao, Z.: Star coloring of cubic graphs. Inf. Process. Lett. 114(12), 689–691 (2014). https://doi.org/10.1016/j.ipl.2014.05.013

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author is supported by SERB(DST), MATRICS scheme MTR/2018/000086. We thank Kirubakaran V. K. and three anonymous referees for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyriac Antony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shalu, M.A., Antony, C. (2022). The Complexity of Star Colouring in Bounded Degree Graphs and Regular Graphs. In: Balachandran, N., Inkulu, R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2022. Lecture Notes in Computer Science(), vol 13179. Springer, Cham. https://doi.org/10.1007/978-3-030-95018-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95018-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95017-0

  • Online ISBN: 978-3-030-95018-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics